陸地も水部も測量できる待望の軽量モデル「TDOT 7 GREEN LITE」 2025年7月16日より受注販売開始

本当に作りたかったGREEN LiDARシステムがここに TDOT GREENシリーズ

TDOT GREENシリーズは、従来のLiDARの枠を超えることを目指して開発された最新のシステムです。 他のLiDARと同じものと考えないでください。

多くの方はグリーンレーザーと聞くと、測深専用の機器を想像するかもしれません。 しかし、私たちが目指したのは、普段使いできるグリーンレーザーです。

> 構造物を正確に捉え、水底も鮮明に計測できる。 濡れた地面でさえ、確かなデータを取得できます。

普段使いのために、TDOT GREENシリーズは軽量設計を徹底しました。 運用のしやすさと、高い安全性(アイセーフティー対応)を両立しています。

さらに、シャープで精密なデータを得るために、ビーム径を極限まで細く。 1秒間に取得できる計測点数も徹底的に追求し、高密度の点群データを実現しました。

> 単にパワーを上げてビームを拡散する測深専用機ではありません。 「高性能で多用途、かつ安全で扱いやすいLiDARシステム」 それが、他にはないTDOT GREENシリーズの価値です。

この要件すべてを満たせるLiDARは、TDOT GREENシリーズだけです。

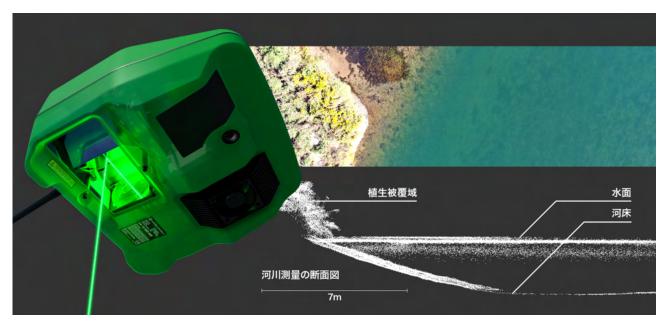
陸地も水部も測量できるグリーンLiDARシステム 2.7kgの軽量モデル「TDOT 7 GREEN LITE」

TDOTシリーズのフラッグシップモデル「TDOT 7 GREEN」の高性能グリーンレーザーモジュールはそのままに、徹底的に軽量・コンパクト化した超軽量GREEN LiDAR SYSTEM「TDOT 7 GREEN LITE」が誕生しました。これまでグリーンLiDAR搭載機では難しかったフットワークの軽さを実現し、より多様な現場への迅速な対応を可能にします。DJI社製「Matrice 350 RTK」への搭載・運用にも対応[®]し、導入の柔軟性がさらに広がりました。

2025年7月16日より、TDOT 7 GREEN LITEの受注販売を開始いたします。

詳しくは、アミューズワンセルフ正規販売代理店、もしくは下記へお問い合わせください。

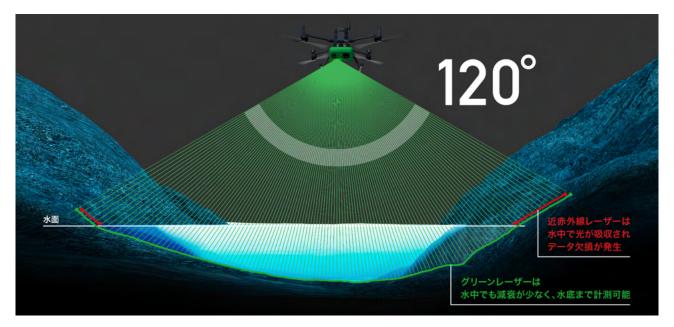
※ DJI Matrice 350 RTKへの搭載には、所定の改造申請が必要です。



水底の測量を可能にするグリーンレーザー技術

TDOT 7 GREEN LITEは、波長532nmのグリーンレーザーを搭載し、従来のLiDARでは対応が難しかった水中の地形測量にも対応します。一般的なLiDARが採用する近赤外線レーザーは、水に触れた瞬間に吸収されてしまうため、水面下の地形データが欠損してしまいます。

しかし、グリーンレーザーは水に吸収されにくい性質を持っており、水中への透過性に優れています。この特性により、陸上の測量はもちろん、濡れた地面や水が撒かれた施工現場、河川や浅海域、ボートが入れない狭小水域、さらには水害発生直後の緊急現場においても、確実なデータ取得が可能になります。


TDOT 7 GREEN LITEは、軽量でありながらも、幅広いシーンに対応する高性能グリーンLiDARとして、これまで困難とされてきた測量の課題を解決します。

視野角120°で広範囲を一度にカバー

TDOT 7 GREEN LITEは、最大120°の広い視野角を備えており、一度のフライトでより広範囲をスキャンすることが可能です。これにより、測量に必要なフライト回数を大幅に削減でき、作業全体の効率向上に直結します。さらに、急斜面や構造物の側面といった、従来の狭い視野角では接近が必要だったリスクの高い場所でも、十分な距離を保ったまま正確な測量が可能となり、現場の安全性も確保されます。

作業効率の向上と現場の安全確保。その両立を実現するのが、TDOT 7 GREEN LITEに搭載された広視野角設計です。

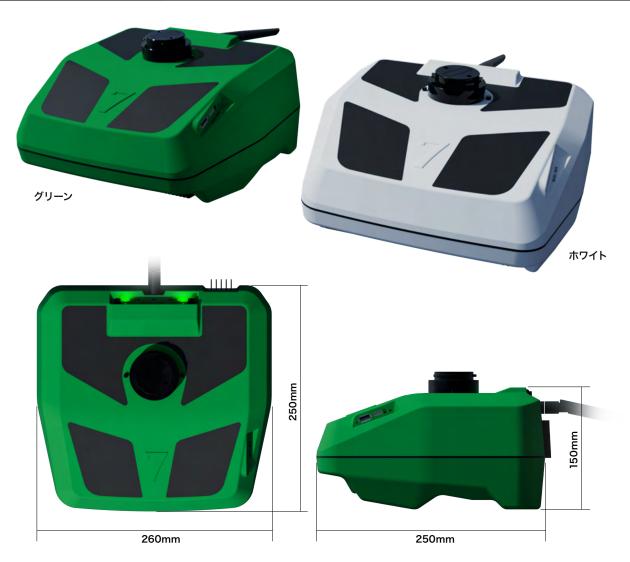
可視光カメラを標準装備し、現場の状況をカラーで記録 カラー点群やオルソ画像^{*}の作成にも対応

TDOT 7 GREEN LITEには、可視光カメラが標準搭載されており、レーザー測量と同時にインターバル撮影を行うことが可能です。取得した写真から得られたカラー情報を、点群データに重ねることで「カラー点群」を作成できます。

さらに、写真データをもとに、位置情報に基づいたオルソ画像の生成にも対応。

視覚的にも空間的にも整合性のある成果物を得ることができます。カラーや写真情報を活用することで、測量後の解析や関係者への説明が格段に分かりやすくなり、現場理解の促進や報告資料の精度向上にもつながります。

※オルソ画像の作成には別途、SfM(Structure from Motion)ソフトウェアが必要です。



TDOT 7 GREEN LITE 搭載可能ドローン例

amuse oneself	GLOW.H	0
amuse oneself	GLOW.L	0
DJI	Matrice350RTK	0
DJI	Matrice400	検証中(2025年7月16日現在)
CHCNAV	X500	0

TDOT 7 GREEN LITE 仕様

モデル名	TDOT 7 GREEN LITE (ティードット 7 グリーン ライト)		
サイズ(約)	W260 x D250 x H150mm		
重量(約)	2.7kg(本体のみ、アンテナ除く)		
ボディカラー	グリーン、ホワイト		
通信周波数帯	920MHz		
GNSS GPS、GLONASS、Galileo、BeiDou			
入力	20V 5A、 24V 4V		
定格消費電力	96W		
標準装備	可視光カメラ		
使用温度範囲	10~40℃ (結露しないこと)		
保管温度範囲	0~40℃ (結露しないこと)		
最大湿度範囲	80%RH以下 (結露しないこと)		

レーザースキャナ 仕様

最長測定距離	≥10% 430m ≥100% 1400m		
最小測定距離	2.5m		
解像度	1mm		
測距精度(1σ)	エコー強 4mm エコー弱 15mm		
精度	5mm		
ビーム拡がり角	1.5mrad		
レーザー波長	532nm		
パルスレート	160,000Hz (計測レート: 106,560Hz)		
スキャンミラー	4面ポリゴンミラー		
スキャン角度(FOV)	120°		
スキャン速度	40Hz / 80Hz		
エコー数	6		
レーザークラス	スキャン対象との距離40m以上 FULL:class 3R		
	スキャン対象との距離25m~40m MEDIUM:class 3R		
	スキャン対象との距離25m以下 LOW:class 1		
測深性能(海水)	クリアな水質(R=0.4)@ 高度50m:1.43 secchi [*]		
R=反射率、C=ビーム減衰係数	条件の悪い水質(R=0.4)@ 高度50m :0.6 secchi		
	クリアな水質(C=0.22)@ 高度50m:13.5m		
	クリアな水質(C=0.22)@ 高度15m:16.8m		

[※] 直径30cmの白色円板(透明度板またはsecchi板)を水中に沈め見えなくなった深度が1secchi。

内蔵INS^{*}

位置精度	5mm
ヘディング	0.03°
ピッチ / ロール	0.006°
速度	0.01m/秒

[※] クラウドサービス「POST-PROCESSING CLOUD」でのポストプロセッシング後の精度。サービスの利用には別途契約が必要です。

可視カメラ 仕様

画素数	4,000×3,000 12Mpixel	
センサー	1/1.7型 7.533(H) x 5.635(V) mm	
焦点距離(35mm換算)	約20mm	
F値	F2.7	
FOV	100°	

日本国内正規販売代理店

有限会社アペオ技研	〒448-0813 愛知県刈谷市小垣江町須賀222番地	0566-27-8577	http://apeo.jp/
株式会社岩崎	〒060-0034 札幌市中央区北4条東2丁目1番地	011-252-2000	http://www.iwasakinet.co.jp/
SkyLink Japan	〒603-8053 京都市北区上賀茂岩ヶ垣内町98-2-2F	075-708-2369	https://skylinkjapan.com/
株式会社山陽測器	〒733-0821 広島県広島市西区庚午北1-20-9	082-272-1567	https://www.sanyou-sokki.co.jp/
株式会社ソッキテック	〒371-0044 群馬県前橋市荒牧町二丁目4番地8	027-235-1177	http://www.sokitec.co.jp/
株式会社パスコ	〒153-0064 東京都目黒区下目黒1-7-1 パスコ目黒さくらビル	0120-494-800	https://www.pasco.co.jp/
VFR株式会社	〒450-6321 愛知県名古屋市中村区名駅1-1-1 JPタワー名古屋21階		https://vfr.co.jp/inquiry/
株式会社久永	〒891-0115 鹿児島県鹿児島市東開町5-11	099-210-0555	https://kk-hisanaga.com/
株式会社ふるさと創生研究開発機構	〒563-0351 大阪府豊能郡能勢町栗栖60-1 ノセボックス内	072-735-7373	http://www.nomuc.jp/
株式会社マイゾックス	〒480-1111 愛知県長久手市山越401番地	0561-71-1155	https://www.myzox.co.jp/
株式会社未来システム工房	〒065-0022 札幌市東区北22条東3丁目1-35 ハイテクビルさっぽろ 141	011-792-5211	http://www.miraisystem.jp
	1	1	1

本件に関するお問い合わせ

株式会社アミューズワンセルフ

大阪本社 〒530-0004 大阪市北区堂島浜1-2-1 新ダイビル24階 2401 TEL:06-6341-0207 東京支社 〒108-0075 東京都港区港南1-9-36 アレア品川ビル13階 301 TEL:070-6509-5504 info@amuse-oneself.com

