

TANK IN THE MARK

检测报告

取口網写	SHA01-22050551-JC-01
样品名称:	Olandu
送检单位:	北京中京丰创科技有限公司
样品来源:	送检单位提供
上海	融資检測科技集团股份有限公司

页码: 1/10

检测报告

报告编号: SHA01-22050551-JC-01

样品名称	Olandu					
样品编号		2206001718-1				
样品数量	1	样品规格	1			
颜色和物态	T.	批号/型号	1			
送检单位	北京中京丰创科技有限公司					
送检单位地址	北京市丰台区	《南四环西路 188 号 3 区 3 ⁴	号楼 5 层 501 室			
抽样日期	1	样品接收日期	2022-06-17			
检测周期		2022-06-17 ~ 2022-07-29	9			
检测项目	Ca	Collagen I (UVA) 合成/含量检测				
检测依据及结果	《芜菁挥发油对紫外线	《诱导皮肤光老化大鼠的保护作》 作用及机理研究》。 结果见下页	用》《杜仲抗皮肤光老化的			
备注		1				

冯俊 王猛 核: 制: 审 编 冯俊 准: 批 签发日期: 2022.08.30

报告编号: SHA01-22050551-JC-01

页码: 2/10

1 实验目的

本测试以成纤维细胞为测试系统,针对主要类型的 Collagen I 含量变化情况,评价活性物是否具有抗 皱功效。

2 测试项目

Collagen I (UVA) 合成/含量检测。

3 试验材料

3.1 试剂

高糖 DMEM 培养液(Gibco)、胎牛血清(Gibco)、PBS(Gibco)、MTT(Sigma)、DMSO(国药)、胰蛋白 酶(Gibco)。

3.2 主要设备

CO2培养箱(Thermo, 160i)、生物安全柜(ESCO, LA2-6A1)、倒置显微镜(徕卡, DMi8)、酶标仪(Tecan, Spark)。

3.3 样品信息

样品名称	样品编号	状态	溶解性	保存条件
Olandu	2206001718-1	液体	水溶	常温

表1 測试样品信息

本页结束

报告编号: SHA01-22050551-JC-01

页码: 3/10

4 实验方法

4.1 细胞毒性检测

- 1) 细胞接种:按1×10⁴个/孔的接种密度接种细胞至96孔板,培养箱(37℃、5%CO2)中孵育过夜。
- 实验分组:实验设置调零组、对照组、阳性对照组与样品组。样品组中,每个样品设置8个浓度梯度,每个浓度梯度下设置3个重复孔。
- 3) 配液: 按测试浓度设定表(表 2)配制不同浓度的样品工作液。

表 2 测试浓度设定表

世日夕功				浓度设置	(%, V/V)			
样品名称	٢	0	3	۲	\$	6	Ø	®
Olandu	10	5	2.5	1.25	0.625	0.313	0.156	0.078

4) 给药:待96 孔板中细胞铺板率达到40%~60%时进行给药。对照组每孔加入200 μL含10%PBS 的培养液;阳性对照组每孔加入200 μL含10%DMSO 的培养液;样品组每孔加入200 μL含有相 应浓度样品的培养液;调零组无细胞接种,仅加入200 μL细胞培养液。给药完成后将96 孔板放置 在培养箱(37°C、5%CO₂)中培养。

- 5) 检测:细胞孵育培养 24 h 后,弃掉上清,加入 MTT 工作液(0.5 mg/mL),37°C避光孵育 2 h, 孵育结束后,弃掉上清,每孔加 100 μL DMSO,在 490 nm 处读取 OD 值。
- 6) 细胞相对活力计算: 根据公式计算

本页结束

14/14/1

报告编号: SHA01-22050551-JC-01

页码: 4/10

「日日ののの」

4.2 Collagen I 含量检测方法

实验分组具体设置如表 3 所示。

	48 0 2032.001			
样品/分组	样品浓度 (V/V)	检测模型	检测指标	检测方法
空白对照 (BC)	7	1		
明性对照(NC)	7			
阳性对照 (PC)	100 µg/mL维生素C和7 µg/mL维生素E		Collagen T	FLISA
	0.078%	UVA照射9 J/cm ²	Conagen I	LEION
Olandu	0.156%			
	0.313%			

主 3 (1)(4)(4)

- 细胞接种:按适宜的接种密度(5×10⁴/孔)接种细胞至 24 孔板,培养箱(37℃、5%CO₂)中孵育过 夜。
- 2) 实验分组:实验设置空白对照组、阴性对照组、阳性对照组与样品组。样品组设置3个浓度梯度。
- 3) 配液: 按测试浓度设定表 (表 3) 配制不同浓度的受试物工作液。
- 4) 给药:待 24 孔板中细胞铺板率达到 40%~60%时进行给药。空白对照组、阴性对照组每孔加入 1 mL 的细胞培养液;阳性对照组每孔加入 1 mL 含有 100 µg/mL 维生素 C 和 7 µg/mL 维生素 E 的培养液; 样品组每孔加入 1 mL 含有相应浓度受试物的培养液;给药完成后将 24 孔板放置在培养箱 (37℃、 5%CO₂)中培养。
- 5) UVA 辐射:细胞培养 24 h 后,阴性对照组、阳性对照组及样品组接受总剂量为 9 J/cm² 的 UVA 辐射,与此同时,空白对照组放置于相同的环境 (UVA 辐射剂量为 0 J/cm²).
- 6) 收集细胞上清: 孵育培养 24 h 后, 收集细胞培养上清液于 EP 管中, 置于-80°C冰箱冷冻保存。
- 7) 细胞培养上清液 ELISA 检测: 根据 ELISA 检测试剂盒的操作说明书对 Collagen I 的含量进行检测分

报告编号: SHA01-22050551-JC-01

页码: 5/10

析.

8) 免疫荧光染色:收集上清后,PBS润洗孔板中细胞3遍。加入100%甲醇固定细胞,用PBS润洗3遍, 每孔再加1 mL1%BSA封闭1小时。弃掉封闭液,每孔加5 μg/mL一抗,放入4℃冰箱过夜。弃去一抗, 用PBS润洗3遍。每孔加二抗,作用2小时。弃去二抗,用PBS润洗3遍,然后利用荧光显微镜进行拍照。

5 实验结果

5.1 细胞毒性检测结果

样品设定 8 个给药浓度,在成纤维细胞上开展细胞毒性检测实验,MTT 检测结果如下(表 4)。

细胞活力(%) 一		浓度梯度(%, V/V)							PC	对照
	10	5	2.5	1.25	0.625	0.3125	0.156	0.0718	10%DMSO	/
Mean	109.06	110.80	110.44	113.79	91.98	137.65	146.27	139.13	43.06	100.00
SD	5.43	6.28	12.60	8.27	3.47	18.76	11.82	6.57	0.36	40.98

表 4 Olandu MTT 检测结果

本页结束

报告编号: SHA01-22050551-JC-01

图 1 细胞活力图

以样品所选 8 个浓度为横坐标,细胞相对活力值为纵坐标,绘制细胞相对活力图(见图 1)。 故根据 MTT 结果,样品 Olandu 在 10% (V/V)浓度范围内未表现出成纤维细胞毒性。

5.2 Collagen I 含量检测结果

根据具体实验方法,进行 Collagen I 含量检测,检测结果如表 5 所示,变化趋势如图 2 所示。

- Arts and here did when

样品名称	Collagen I 含量 (ng/mL)	SD	<i>p</i> -value	
空白对照 (BC)	6.96	1.97	1	
阴性对照 (NC)	2.22	0.53	0.0480#	
阳性对照 (PC)	5.40	0.15	0.0095**	
Olandu-0.078%	4.04	0.76	0.0103*	
Olandu -0.156%	3.32	0.43	0.0043**	
Olandu -0.313%	6.09	1.79	0.0248*	

AV Shan New

报告编号: SHA01-22050551-JC-01

备注:用 t-test 进行统计分析时, NC 组与 BC 组相比, 显著性以#表示, p-value < 0.05 表示为#, p-value < 0.01 表示为##; PC 组、样品组与 NC 组相比, 显著性以*表示, p-value < 0.05 表示为*, p-value < 0.01 表示为**。

图 2 Collagen I 含量变化趋势图

结果显示,相比较 BC 组,NC 组成纤维细胞接受总剂量为 9 J/cm²的 UVA 辐射后,Collagen I 含量 水平显著下调(p < 0.05),说明 UVA 刺激有效。

相比较 NC 组, PC 组的维生素 C 和维生素 E 可以显著升高 Collagen I 的含量水平(p < 0.01), 表明本 次阳性对照检测有效。

相比较 NC 组,本次检测样本的三个浓度(0.078%、0.156%和 0.313%)均对 UVA 辐射诱导成纤维细胞 Collagen I 含量表现出显著提升作用(p < 0.05)。

本页结束

页码: 7/10

报告编号: SHA01-22050551-JC-01

页码: 8/10

「三日本、夏少

Olandu 的一型胶原免疫荧光染色结果如下图 3 所示。

分组	平行 1	平行 2	平行 3
NC			
0.078%-Olandu			
0.156%-Olandu			
0.313%-Olandu			

图 3 一型胶原蛋白免疫荧光染色结果汇总图

报告编号: SHA01-22050551-JC-01

页码: 9/10

6 结论

成纤维细胞接受总剂量为 9 J/cm² 的 UVA 辐射后, Collagen I 含量显著下降。样品 Olandu 在 0.078%、 0.156%和 0.313% (V/V) 浓度下作用细胞 24 h 后, UVA 辐射后成纤维细胞的 I 型胶原蛋白含量表现出显 著提高(p < 0.05), 具有抗皱功效。

样品 Olandu 在 0.313% (V/V) 浓度下作用细胞 24 h 后, UVA 辐射后成纤维细胞的 I 型胶原蛋白含 量为 NC 组的 274%。

7参考文献

[1]李海珍,祁瑛,郭胜存,陈湘宏.芜菁挥发油对紫外线诱导皮肤光老化大鼠的保护作用[J].西北药学杂志,2021,36(05):745-750.

[2]徐艳明. 杜仲抗皮肤光老化的作用及机理研究[D].黑龙江中医药大学,2011.

报告结束

报告编号: SHA01-22050551-JC-01

页码: 10/10

WASTESTING .0

____ 声明 ____

- 1. 报告若未加盖"检验检测专用章或报告专用章"或编制人、审核人、批准人未全部签字,一律无效。
- 2. 本报告不得擅自修改、增加或删除,否则一律无效。
- 报告部分提供或部分复制均视为无效。全复制件未重新加盖"检验检测专用章或报告专用章"视为无效。
- 4. 如对报告有疑问,请在收到报告后 15 个工作日内提出。
- 本报告结果仅对本次受测样品负责。未加盖 CMA 标志的报告中全部/部分检测项目未取得资质认定, 仅供科研、教学、企业内部质量控制、企业产品功效研究等目的使用。
- 6. 委托方对样品及其相关信息的真实性负责。
- 7. 未经本公司同意,委托人不得擅自使用检验检测结果进行不当宣传。
- 8. 本报告的符合性判定未考虑测量不确定度对结果的影响。

ALC: NOT ALL OF ALL OF

検査報告書

页码: 1/10

検査報告

報告番号 SHA01-22050551-JC-01

		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -					
サンプルの名称		Olandu					
サンプル番号		2206001718-1					
サンプルの数量	1	サンプルの仕様	1				
色と形態	7	批号/型号	1				
依頼者	北京中京丰创科技有限公司						
送検先住所	北京市丰台区南四环西路 188 号 3 区 3 号楼 5 层 501 室						
採取日	I	サンプル受領日	2022-06-17				
検査サイクル		2022-06-17~2022-07-29)				
検査項目	C	Collagen I (UVA)合成/含量検査					
	芜菁挥发油	由对紫外线诱导皮肤光老化大量	的保护作用」				
評価基準お	「村	「杜仲抗皮肤光老化的作用及机理研究」					
	結	果は次ページに記載されてい	ます。				
		2003/2004 #16.2017 M					
備考		1					

1201 Namburger Net

報告番号 SHA01-22050551-JC-01

页码: 2/10

1 テスト目的

本テストは線維芽細胞をテストシステムとして、主要なタイプのコラーゲン I の含有量の変 化に対し、活性成分がしわ防止効果を持っているかどうかを評価します。

2 テスト項目

Collagen I (UVA) 合成/含量検査

3 試験材料

3.1 試薬

高糖 DMEM 培養液(Gibco)、胎牛血清(Gibco)、PBS(Gibco)、MTT(Sigma)、DMSO(国薬)、胰 蛋白酵素(Gibco)。

3.2 主な設備

CO₂培養箱(Thermo, 160i)、バイオセーフティキャビネット(ESCO, LA2-6A1)、インバート型 顕微鏡(Leica, DMi8)、エルリサリーダー(Tecan, Spark)

3.3 サンプル情報

样品名称	样品编号	状态	溶解性	保存条件
Olandu	2206001718-1	液体	水溶	常温

表1 テストサンプル情報

本页结束

報告番号 SHA01-22050551-JC-01

页码: 3/10

4 実験方法

4.1 細胞毒性検査

1) 細胞の接種:96 ウェルプレートに 1x10⁴ 個/ウェルの密度で細胞を接種し、37℃、5%CO₂の培養箱 で一夜培養する。

2)実験グループ:負の対照組、陽性対照組、試料組の実験グループを設定する。試料組では、各試料 に8つの濃度勾配を設定し、各濃度勾配ごとに3つの複製ウェルを設ける。

3) 溶液の配合:表2に示すテスト濃度に基づいて、異なる濃度の試料作業液を調製する。

经日本物				浓度设置	(%, V/V)			_
样品名称	١	0	3	۲	\$	6	Ø	®
Olandu	10	5	2.5	1.25	0.625	0.313	0.156	0.078

表2 テスト濃度設定表

4)給薬:96 ウェルプレート中の細胞の被覆率が40%~60%に達した時点で給薬を行う。負の対照 組には各ウェルに200µLの10%PBS含有培養液を加える。陽性対照組には各ウェルに200µLの 10%DMSO含有培養液を加える。試料組には各ウェルに対応する濃度の試料含有培養液を加える。 調零組には細胞の接種は行わず、200µLの細胞培養液のみを加える。給薬が完了した後、96 ウェ ルプレートを培養箱(37℃、5%CO2)に戻す。

5) 検査: 細胞培養は 24 時間後に上清液を捨て、MTT 作業液(0.5 mg/mL)を加えて、37℃で光を 避けて 2 時間培養する。培養が終了した後、上清液を捨て、各ウェルに 100µL の DMSO を加え、 490 nm で OD 値を読み取る。

6)細胞の相対活性の計算:公式に基づいて計算する:

細胞相对活力 = 描記 OD - 调零孔 OD * 100% 溶剂对照孔 OD - 调零孔 OD

本页结束

LA BA

報告番号 SHA01-22050551-JC-01

页码: 4/10

4.2 Collagen I 含量検定方法

実験グループの具体的な設定は、表3に示す通りです。

	AC - PERSONAL			
样品/分组	样品浓度 (V/V)	检测模型	检测指标	检测方法
空白对照 (BC)	7	1		
明性对照 (NC)	7			
阳性对照 (PC)	100 µg/mL维生素C和7 µg/mL维生素E		Collagen T	FUSA
	0.078%	UVA照射9 J/cm ²	Conagen 1	ELION
Olandu	0.156%			
	0.313%			

事 3 定验设计

1) 細胞接種: 適切な接種密度(5x10⁴/孔) で細胞を 24 孔プレートに接種し、培養箱(37℃、5%CO₂) で 一晩培養します。

2)実験グループ:実験は、ブランク対照群、陰性対照群、陽性対照群、および試料群を設定します。試料群には、3つの濃度勾配が設定されます。

3)液の配合: テスト濃度の設定表(表3)に従って、被験物質の異なる濃度の作業液を調製します。

4) 投薬: 24 孔プレートの細胞カバー率が 40%~60%に達したら、投薬を行います。ブランク対照群と陰 性対照群には、それぞれ 1mL の細胞培養液を加えます。陽性対照群には、100 μ g/mL のビタミン C と 7 μ g/mL のビタミン E が含まれる 1mL の培養液を加えます。試料群には、それぞれの濃度の被験物質を 含む 1mL の培養液を加えます。投薬後、24 孔プレートを培養箱(37℃、5%CO2)に置いて培養します.

5) UVA 照射: 細胞培養後 24 時間、陰性対照群、陽性対照群、および試料群は合計線量が 9J/cm2 の UVA 照射を受けます。同時に、ブランク対照群は同じ環境に置かれます(UVA 線量は 0J/cm2 です)。

6) 細胞培養上清の収集: 24 時間培養後、細胞培養上清液を EP チューブに収集し、-80℃の冷凍庫に保存 します。

7) 細胞培養上清液の ELISA 検査: Collagen I の含量を検出・分析するために、ELISA 検査キットの操作 説明書に従います。 「ない、ひつきなくろ

報告番号 SHA01-22050551-JC-01

8) 免疫螢光染色:上清液を収集後、PBS で孔板中の細胞を3回洗浄します。100%メタノール を加えて細胞を固定し、PBS で3回洗浄します。各孔に1mLの1%BSA を加え、1時間封鎖し ます。封鎖液を捨て、各孔に5µg/mLの第一抗体を加えて、冷蔵庫で一晩放置します。第一抗 体を捨て、PBS で3回洗浄します。各孔に二次抗体を加え、2時間作用させます。二次抗体を 捨て、PBS で3回洗浄し、その後蛍光顕微鏡を使用して撮影します。

5 実験結果

5.1 細胞毒性検査結果

サンプルに8つの投与濃度を設定し、成繊維細胞に対する細胞毒性検査を実施しました。MTT 検査結果は以下の通りです(表4)。

细胞活力(%)	浓度梯度(%, V/V)							PC	对照	
	10	5	2.5	1.25	0.625	0.3125	0.156	0.0718	10%DMSO	/
Mean	109.06	110.80	110.44	113.79	91.98	137.65	146.27	139.13	43.06	100.00
SD	5.43	6.28	12.60	8.27	3.47	18.76	11.82	6.57	0.36	40.98

表 4 Olandu MTT 检测结果

本页结束

页码: 5/10

Contraction of

+LELIN +-

報告番号 SHA01-22050551-JC-01

图 1 细胞活力图

サンプルの選択した8つの濃度を横軸に、細胞の相対的な活性値を縦軸にして、細胞の相対的 な活性グラフを作成しました(図1参照)。MTT 結果によれば、Olandu サンプルは10% (V/V) の濃度範囲では成繊維細胞に毒性を示さなかったことが示されました。

5.2 Collagen I 含量検査結果

具体実験方法に基づいて Collagen I の含量を検出し、その結果は表 3 に示され、変化の傾向は 図 2 に示されています。

样品名称	Collagen I 含量 (ng/mL)	SD	<i>p</i> -value
空白对照 (BC)	6.96	1.97	1
阴性对照 (NC)	2.22	0.53	0.0480#
阳性对照 (PC)	5.40	0.15	0.0095**
Olandu-0.078%	4.04	0.76	0.0103*
Olandu -0.156%	3.32	0.43	0.0043**
Olandu -0.313%	6.09	1.79	0.0248*

页码: 6/10

報告番号 SHA01-22050551-JC-01

备注: t-test で統計分析を行った場合、NC グループと BC グループを比較した場合、有意性 は#で示され、p 値<0.05 の場合は#、p 値<0.01 の場合は##と表示されます。PC グループとサ ンプルグループを NC グループと比較した場合、有意性はで示され、p 値<0.05 の場合は、p 値 <0.01 の場合は**と表示されます。

图 2 Collagen I 含量变化趋势图

結果によれば、BC グループに比べて、NC グループでは成繊維細胞が 9 J/cm² の UVA 放射 を受けた後、Collagen I の含量が有意に低下していることが示されました(p < 0.05)。これは UVA 刺激が有効であることを示しています。

また、NC グループに比べて、PC グループではビタミン C とビタミン E が Collagen I の含 量を有意に上昇させることがわかりました(p<0.01)。これは本試験における陽性対照検査が 有効であることを示しています。

さらに、NC グループと比較して、本試験のサンプルの 3 つの濃度(0.078%、0.156%、0.313%)全てが、UVA 放射による成繊維細胞の Collagen I の含量を有意に増加させる作用を示しています(p<0.05)。

本页结束

页码: 7/10

報告番号 SHA01-22050551-JC-01

页码: 8/10

THE X BUL

Olanduの一型コラーゲンの免疫蛍光染色結果は、下記の図3に示されています。

分组	平行 1	平行 2	平行 3
NC			
0.078%-Olandu			
0.156%-Olandu			
0.313%-Olandu			

图 3 一型胶原蛋白免疫荧光染色结果汇总图

報告番号 SHA01-22050551-JC-01

页码: 9/10

6 結論

成纖維細胞接受總劑量為9J/cm²的UVA 輻射後,Collagen I 含量明顯下降。樣品 Olandu 在 0.078%、0.156%和 0.313%(V/V)濃度下作用於細胞 24 小時後,UVA 輻射後成纖維細胞的 I 型膠 原蛋白含量表現出顯著提高(p<0.05),具有抗皺功效。

樣品 Olandu 在 0.313%(V/V)濃度下作用於細胞 24 小時後,UVA 輻射後成纖維細胞的 I 型膠 原蛋白含量為 NC 組的 274%。

7 參考文獻

[1]李海珍,祁瑛,郭胜存,陈湘宏.芜菁挥发油对紫外线诱导皮肤光老化大鼠的保护作用[J].西北药学杂志,2021,36(05):745-750.

[2]徐艳明. 杜仲抗皮肤光老化的作用及机理研究[D].黑龙江中医药大学,2011.

报告结束

報告番号 SHA01-22050551-JC-01

页码: 10/10

____ 声明 ·

1、報告書に「検査検定専用の印章または報告書専用の印章」が押されていない場合、または 編集者、審査者、承認者がすべて署名されていない場合、すべて無効となります。

2、本報告書は無断で修正、追加、または削除することはできません。そうでない場合、すべて無効となります。

3、報告書の一部の提供または一部の複製は無効と見なされます。全文複製であっても、「検 査検定専用の印章または報告書専用の印章」を再度押していないものは無効と見なされま す。

4、報告書に疑問がある場合は、報告書を受け取った後 15 営業日以内に問い合わせてください。

5、本報告書の結果は、今回の試験対象サンプルに対してのみ責任を負います。CMA マークが 押されていない報告書においては、全てまたは一部の検査項目が資格認定を取得していない ため、科学研究、教育、企業内品質管理、企業製品効果の研究などの目的でのみ使用可能で す。

6、依頼主はサンプルおよび関連情報の真実性に責任を負います。

7、弊社の同意なしに、委託者は検査検定結果を不適切な宣伝に使用することはできません。

8、本報告書の適合判定は、測定の不確かさが結果に与える影響を考慮していません。

結論

線維芽細胞が総照射量が 9J/cm²の UVA 放射線を照射後、コラーゲンの含有量は大幅に減少 されていました。Olanduをサンプルとして、0.078%、0.156%、および 0.313%(V/V)の濃度で細胞 に作用させ 24 時間後に、UVA 放射線を照射後、線維芽細胞の I 型コラーゲンの含有量が大幅 に増加されました(p < 0.05)。これにより、しわ対策効果があるということがわかりました。

Olanduをサンプルとして、0.313%(V/V)の濃度で、細胞に作用させ24時間後に、UVA照射後、線維芽細胞のI型コラーゲン含有量はNCグループの274%となりました。

参考文献

1.李海珍、祁瑛、郭胜存、陳湘宏、芜芳により、揮発油は紫外線に誘発される皮膚光老化ラット への保護効果に関する研究です。西北薬学雑誌、2021年、36巻(05):745-750。

2. 徐艳明、杜仲により、皮膚光老化に対する抗老化とメカニズムの研究。黒龍江中医薬大学、 2011年。

報告終了

特許第6976014号 (FATENT NAMBER)

発明の名称 (TLILE OF THE INVENTION) 新規ポリフェノール化合物

特許權者 (PATENTEF) 東京部千代田区神田神保町3丁目10 株式会社ナボカルコスメティックス

センカ キョウ 矢代 卓也

その他別鉄記載

出顾备号 (APPLICATION NUMBER)

出颜日 (FILING DATE) 祭録日

(REGESTRATION DATE)

特赖2021-066340 令和 3年 4月 9日(koril y 2021) 令和 3年11月11日(kovenber 11,2021)

この発明は、特許するものと確定し、特許原源に登録されたことを証する。 (TMIS IS TO CERTIFY THAT THE PATENT IS HEGISTERED ON THE HEGISTER OF THE JAPAN PATENT OFFICE)

今和 3年11月11日(November 11, 2021);

特许庁長官 (COMMISSIONER, JAPAN PATENT OFFICE)

特許証 (GERTLE ICATE OF PATEMI)

特許第6976014号:PATFWT HIMBER:

持航2021-066340 (AMPLICATION NUMBER)

発明者 (INVENTOR)

トウ テイ カ ホウ チ テン オウ カイ ユウ ジェームス ウエイ [以下余台]

11 11 1		C 1001
1, 21		U P

323特許公報(81)

1111 特許番号

特許第6976014号

(P6976014)

(45) 発行已 + **和3年12月1日(2021.12.1)**

(4) 登録日 - 分配5年11月11日 (2021, 1...1)

SCINT.CL	۴I		
CO7H 13/0	6 (2006.01) СОЛН	13-08	CSP
A 61 K 31/7	224 (2006.01) AGIK	31,7024	
A 6 1 P 43/0	0 (2006.01) AGEP	43/00	111
A61P 17/0	0 (2006.01) AGLP	17700	
A 15 1 K 8/6	0 (2006.01) AGIK	5762	
			請求頃の教子 (全 17 頁) 最終真に続く
21) 出籍委号	1500 2021-66340 (F2021-66340)	173) 特許權言	왕 390010124
(22) 出現日	右利1年4月3日 (2021.4.3)		除式会社ナホカルコスメディックス
春室請求日	令和3年5月13日(2021.3.13)		夏京都千代田区神田神保町3丁日10
		1740代理人	LEUCOS814
早期審査方象出願			井理! 爆斃 喻明
		1740代理人	100162188
			井理士 捉起 真弓
		173) 兼明者	センーカーキョウ
			中華人民共和国香港人輔清水商香港村推大
			学学術習ゅうキラの重
		125) 援助县	矢代 卓也
			東京都千代田区禅田禅保町37日10 株
			武会社ナポカルコスメディックスで
		1	

24: 【発明の名物】新観ポリフェノールに合物

(57)【特許請求の範囲】

【請求項1】

下記式(I)で表される化合物若しくはその塩又はそれらの溶媒和物。 【化1】

10

【請求項2】

下記式(I)で表される化合物若しくはその塩又はそれらの溶媒和物<u>のみ</u>を含有するコ ラーゲン産生促進剤。

【請求項3】

前記式(I)で表される化合物若しくはその塩又はそれらの溶媒和物の濃度が0.00 01mM~1mMである請求項2に記載のコラーゲン産生促進剤。

【請求項4】

<u>請</u>求項2又は3に記載の<u>コラーゲン産生促進</u>剤<u>を有効成分として含有するコラーゲン産</u> <u>生促進用皮膚外用剤(ただし、イナゴマメの莢果の含水アルコール抽出物を有効成分とし</u> て含有するコラーゲン産生促進用皮膚外用剤を除く)。

【請求項5】

<u>請</u>求項2<u>又は3</u>に記載の<u>コラーゲン産生促進</u>剤<u>を有効成分として含有するコラーゲン産</u>20 <u>生促進用化粧料(ただし、イナゴマメの莢果の含水アルコール抽出物を有効成分として含</u> 有するコラーゲン産生促進用化粧料を除く)。

【請求項6】

下記式(I)で表される化合物若しくはその塩又はそれらの溶媒和物を含有するコラー ゲン産生促進用飲食品。

【化3】

30

10

【請求項7】

イナゴマメ(Ceratonia siliqua)の莢果の含水アルコール抽出物を 得る工程、

前記含水アルコール抽出物を、石油エーテル、酢酸エチルの順に液液抽出を行い、酢酸 ⁴⁰ エチル画分を回収する工程、及び、

前記酢酸エチル画分から式(I)で表される化合物を分離する工程、を有することを特徴とする該化合物の製造方法。

【化4】

10

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、マメ科植物であるイナゴマメ(Ceratonia siliqua L.)から分離、精製して得られる新規なポリフェノール化合物及びその用途に関し、さらに 、この化合物の製造方法に関する。

【背景技術】

[0002]

イナゴマメ(Ceratonia siliqua L.)は、主に地中海地方を原産 20 とするマメ科植物である。イナゴマメの莢果、すなわち、イナゴマメの莢及び果肉はキャ ロブ(carob)と呼ばれ、古くから食用又は食品原料として利用されてきた。成熟し た莢果は長さ10~25cm程度で、甘味を呈する。イナゴマメの莢果には、多糖類、セ ルロース及びミネラル類が多く含まれ、タンパク質や非炭水化物系の低分子化合物等が少 量含まれている。近年、イナゴマメの新たな機能に関する研究が進められており、イナゴ マメの莢果(pod)抽出物が、潰瘍性大腸炎や胃潰瘍などの消化器疾患の予防及び治療 効果を有することが報告されている(非特許文献1、2)。また、特許文献1には、イナ ゴマメの種子抽出物に - グルコシダーゼ阻害活性があり、体重増加の抑制効果を有する ことが記載されている(特許文献1)。

【0003】

【先行技術文献】 【特許文献】 【0004】

他方、コラーゲンは、生体の全タンパク質の約20%を占める重要なタンパク質である 。コラーゲンは、主に結合組織に存在し、軟骨、骨、腱、靭帯、真皮及び白目の部分など の多くの組織に強度を与え、弾力性・伸展性を付与する役割を担っている。また、コラー ゲンは細胞外マトリックスの主要な構成成分である。コラーゲンはその構造によって数十 種類ものタイプがあるところ、皮膚の真皮にはI型コラーゲンが非常に多く含まれており 、皮膚に強度と弾力性をもたらしている。このI型コラーゲンの発現及び産生にはCOL 1 A 1 遺伝子が重要な役割を果たしており、I型コラーゲンは、COL1A1遺伝子にコ ードされている2本の 1 鎖とCOL1A2遺伝子にコードされている1本の 2 鎖から 構成されている。コラーゲンは皮膚の弾力性を保つ役割を有することから、加齢によって コラーゲンが減少することにより、皮膚のシワの原因となることが知られている。そこで 、加齢により減少したコラーゲンを補うため、コラーゲン遺伝子の発現を促進させ、生体 内でコラーゲンの産生を促進することが有効な手段と考えられている。

30

40

【特許文献 1】特開 2 0 0 5 - 1 1 9 9 9 9 号公報 【非特許文献】 【 0 0 0 5 】 【非特許文献 1】Rtibi K, Jabri M A, Selmi S, et al., "Preventive effect of caro b (Ceratonia siliqua L.) in dextran sulfate sodium-induced ulcerative colitis in 50 rat ", RSC Advances, 2016年, Vol. 6, p.19992-20000.

【非特許文献 2】Rtibi K, Selmi S, Grami D, et al., "Chemical constituents and p harmacological actions of carob pods and leaves (Ceratonia siliqua L.) on the ga strointestinal tract: A review", Biomedicine & Pharmacotherapy, 2017年, Vol. 93, p.522-528.

⁄」 【発明の概要】

【発明が解決しようとする課題】

[0006]

しかしながら、上述した非特許文献1,2及び特許文献1では、イナゴマメ抽出物について、潰瘍等の消化器疾患の治療効果や体重増加の抑制効果を有することが報告されてい ¹⁰ るが、具体的な活性成分の特定にはまだ至っていない。

[0007]

また、イナゴマメをコラーゲン遺伝子の発現促進のために用いることについての検討は これまでなされておらず、その有効性はまったく不明であった。

【 0 0 0 8 】

したがって、本発明は上述した点に鑑みてなされたもので、その目的は、イナゴマメ由 来の新規な活性成分及びその用途を提供することにある。

【 0 0 0 9 】

また、本発明の他の目的は、コラーゲン遺伝子を発現促進することができる、新たなコ ラーゲン産生促進剤であって、イナゴマメ由来のものを提供することにある。さらに、こ ²⁰ のコラーゲン産生促進剤を含む皮膚外用剤、化粧料及びコラーゲン産生促進用飲食品を提 供することを目的とする。

【課題を解決するための手段】

[0010]

本発明者らは、イナゴマメの莢果抽出物から新規なポリフェノール化合物を分離し、こ の新規化合物がコラーゲン遺伝子の発現量を増加させる作用を有することを見出した。こ の知見に基づき、本発明を完成するに至った。

[0011]

上記課題を解決するため、本発明は、下記式(I)で表される化合物若しくはその塩又 はそれらの溶媒和物である。

[0012]

【化1】

40

(I)

[0013]

式(I)で表される化合物は、イナゴマメ(Ceratonia siliqua)の 莢果抽出物から分離、精製された新規ポリフェノール化合物であり、優れたコラーゲン産 生促進作用を有する。

【0014】

また、本発明のコラーゲン産生促進剤は、上述した式(I)で表される化合物若しくは その塩又はそれらの溶媒和物を含有する。式(I)で表される化合物を投与することによ り、コラーゲン遺伝子の発現を促進させ、コラーゲン産生を促進することができる。 (5)

[0015]

また、本発明のコラーゲン産生促進剤は、上述した式(I)で表される化合物若しくは その塩又はそれらの溶媒和物の濃度が0.0001mM~1mMであることも好ましい。 これにより、コラーゲンの産生促進効果に優れる活性成分濃度が選択される。 【0016】

また、本発明のコラーゲン産生促進剤は、皮膚外用剤又は化粧料であることも好ましい 。これにより、皮膚におけるコラーゲンの産生を促進することができる皮膚外用剤又は化 粧料が得られる。

【0017】

また、本発明のコラーゲン産生促進用飲食品は、上述した式(I)で表される化合物若 10 しくはその塩又はそれらの溶媒和物を含有する。これにより、生体内におけるコラーゲン の産生を促進することができる飲食品が得られる。

【0018】

また、本発明の上述した式(I)で表される化合物の製造方法は、イナゴマメ(Ceratonia siliqua)の莢果の含水アルコール抽出物を得る工程、この含水ア ルコール抽出物を石油エーテル、酢酸エチルの順に液液抽出を行い、酢酸エチル画分を回 収する工程、及び、回収された酢酸エチル画分から式(I)で表される化合物を分離する 工程、を有している。これにより、コラーゲンの産生促進作用を有する、新規なポリフェ ノール化合物が得られる。

【発明の効果】

[0019]

20

30

本発明によれば、以下のような優れた効果を有する新規ポリフェノール化合物、コラー ゲン産生促進剤、皮膚外用剤、化粧料及び飲食品を提供することができる。

(1)コラーゲン遺伝子の発現量を増加させ、コラーゲンの産生を促進することができる

(2) 古来から食用とされているイナゴマメの莢果由来の化合物を有効成分とするもので あるため、人体に対する安全性が高い。

【図面の簡単な説明】

[0020]

【図1】本発明の化合物の高分解能ESIマススペクトルを示す図である。

【図2】本発明の化合物の紫外吸収スペクトルを示す図である。

【図3】本発明の化合物の赤外吸収スペクトルを示す図である。

【図4】本発明の化合物の¹ H - N M R スペクトル(C D ₃ O D 、 6 0 0 M H z)を示す 図である。

【図 5】本発明の化合物の^{1 3} C - N M R スペクトル(C D ₃ O D 、 1 5 0 M H z)を示 す図である。

【図6】本発明の化合物のHSQCスペクトルを示す図である。

【図7】本発明の化合物のHMBCスペクトルを示す図である。

【図8】本発明の化合物のNOESYスペクトルを示す図である。

【図9】本発明の化合物の¹ H - N M R シグナル及び^{1 3} C - N M R シグナルを一覧にま ⁴⁰ とめた図である。

【図10】本発明の化合物のHMBC相関及びNOESY相関を示す図である。

【図11】本発明の化合物によるコラーゲン遺伝子(COL1A1)のmRNA発現量を 示すグラフである。

【発明を実施するための形態】

【0021】

以下、本発明の新規ポリフェノール化合物及びコラーゲン産生促進剤、これを含む皮膚 外用剤、化粧料、コラーゲン産生促進用飲食品並びにこの化合物の製造方法について説明 する。

【0022】

本発明に係る下記式(I)で表される新規ポリフェノール化合物は、イソフェルラ酸と 没食子酸とがそれぞれグルコースにエステル結合した化合物である。

【0023】

【化2】

11:

[0024]

本発明に係る新規ポリフェノール化合物は塩であってもよく、薬理学的に許容される塩 であることが好ましい。この新規ポリフェノール化合物の薬理学的に許容される塩として は、酸又は塩基と形成される塩であればよく、特に限定されない。また、この新規ポリフ ェノール化合物又はその塩は、溶媒和物であってもよく、特に限定されないが、例えば、 水和物、エタノール等の有機溶媒和物が挙げられる。

【0025】

本発明に係る新規ポリフェノール化合物はコラーゲン産生促進作用を有しており、コラ ーゲン産生促進剤として用いることができる。このうち、産生促進されるコラーゲンとし ては、皮膚に多く含まれる I型コラーゲン又は I I I型コラーゲンが好ましく、 I型コラ ーゲンがより好ましい。

[0026]

本発明において、コラーゲン産生促進とは、コラーゲン遺伝子の発現促進又はコラーゲン ン(タンパク質)の発現促進のことをいい、本発明の新規ポリフェノール化合物を添加又 は投与されない状態のコントロールと比較して、コラーゲン遺伝子又はコラーゲンの発現 が亢進していることを意味する。より具体的には、コラーゲン遺伝子の発現レベルがコン トロールの1.5倍以上であることが好ましく、1.7倍以上であることがより好ましく 、2倍以上であることが特に好ましい。コラーゲン遺伝子の発現レベルは、例えば、リア ルタイムPCR(QPCR)やマイクロアレイ等の公知の方法で測定でき、コラーゲンの 発現レベルは、例えば、免疫染色、ウエスタンブロッティング等の公知の方法で測定され 得る。

[0027]

本発明の新規ポリフェノール化合物は、イナゴマメの莢果から分離、精製することによ り得ることができる。本発明で用いられるイナゴマメとは、学名をCeratonia siliquaといい、マメ科ジャケツイバラ亜科イナゴマメ属の植物である。地中海沿 岸地方を原産とする植物であるが、本発明においては、産地や栽培環境は特に限定されず 、あらゆる産地及び栽培環境のイナゴマメを用いることができる。

【0028】

本発明の新規ポリフェノール化合物の分離方法について説明する。まず、イナゴマメの 莢果から含水アルコール抽出物を得る。本発明におけるイナゴマメ莢果の含水アルコール 抽出物とは、イナゴマメの莢果に抽出溶媒として含水アルコールを加え、抽出処理を施す ことによって得られた抽出物をいう。イナゴマメの莢果とは、イナゴマメの莢付果実の莢 と果肉のことを意味し、莢又は果肉のいずれか一方を抽出材料として用いることも可能で あるが、莢及び果肉を用いることがより好ましい。抽出処理は、採取された状態、すなわ ち、生の状態のイナゴマメ莢果、又は乾燥状態のイナゴマメ莢果に対して行われるが、抽 出効率の向上を図るため、又は取り扱いを容易とするために種々の前処理が施されたイナ

20

10

50

ゴマメ莢果に対して抽出処理を施すことも可能である。前処理としては、特に限定されな いが、乾燥処理、破砕処理又は粉砕処理等が挙げられ、これら前処理が施されたイナゴマ メの莢果に抽出処理を施して抽出物を得てもよい。

(7)

【0029】

抽出溶媒として用いられる含水アルコールを構成するアルコールとしては、本発明のポ リフェノール化合物を抽出できるものであれば特に限定されず、例えば、エタノール、メ タノール、プロパノール、イソプロパノール、ブタノール又はイソブタノール等が挙げら れる。このうち、人体への安全性及び抽出効率等の観点から、抽出溶媒としては、含水エ タノールが好適に選択される。また、含水アルコールのアルコール濃度としては、50~ 99%が好ましく、60~97%がより好ましく、70~95%が特に好ましい。また、 抽出溶媒には、本発明の化合物の抽出を妨げない範囲において、他の成分を含有させるこ とも可能である。

【0030】

含水アルコールによる抽出方法としては、イナゴマメの莢果に抽出溶媒である含水アル コールを加えて浸漬させ、抽出を行う。例えば、イナゴマメ莢果を含水率10%未満の乾 燥破砕物とした場合には、植物体1重量部に対し、抽出溶媒を5~10重量部用いること が好ましい。また、抽出方法としては、室温での抽出、加熱抽出、加圧加熱抽出又は亜臨 界抽出等のいずれの方法でも行うことが可能であるが、抽出効率の観点から、還流操作に よる加熱抽出が好ましい。また、抽出効率を高めるため、抽出操作は複数回行うことが好 ましく、抽出溶媒中のアルコール濃度を変えて複数回の抽出操作を行うことがさらに好ま しい。特に限定されないが、具体的には、95%エタノールによる還流抽出を1~5回行 い、引き続いて、70%エタノールによる還流抽出を1~5回行うといった抽出方法が挙 げられる。抽出時間は、抽出方法、抽出材料の態様、抽出溶媒の種類又は抽出温度等に応 じて種々設定されるが、例えば、70~95%のエタノールを用いて還流抽出を行う場合 には、1回の抽出時間として1~3時間程度とすることが好ましく、1.5時間程度とす ることが特に好ましい。上述した抽出処理後、残渣をデカンテーション、遠心分離又はろ 過等により取り除くことによりイナゴマメの莢果の含水アルコール抽出物が得られる。得 られた抽出物には減圧蒸留等の処理を施すことにより、濃縮液や固形物としたものも含ま れる。

【0031】

上述のようにして得られたイナゴマメの莢果の含水アルコール抽出物については、イナ ゴマメの莢果に多量に含まれている糖類等が存在すると考えられるため、これら不要な成 分を除去することを目的として、イオン交換樹脂による分離操作を行ってもよい。具体的 には、イナゴマメの莢果の含水アルコール抽出物1重量部に対し、1~10重量部の水を 加えて分散させ、マクロポーラス吸着樹脂等のイオン交換樹脂を詰めたカラムに通し、本 発明のポリフェノール化合物を吸着させて、糖類などの不要成分を流出除去させる。その 後、95%エタノール等で溶出させることにより、本発明のポリフェノール化合物を含む 画分が回収される。

[0032]

引き続いて、イナゴマメの莢果の含水アルコール抽出物又は上述したイオン交換樹脂に より分離された回収画分のさらなる分離操作について説明する。含水アルコール抽出物又 は回収画分を水系溶媒に分散させ、石油エーテル、酢酸エチルの順に溶媒抽出を行う。水 系溶媒としては、本発明のポリフェノール化合物を分散できるものであれば特に限定され ないが、50%含水メタノールが好適に用いられる。石油エーテル/水系溶媒での液液抽 出を複数回行った後、酢酸エチル/水系溶媒での液液抽出を複数回行う。この溶媒抽出操 作により回収された酢酸エチル画分に本発明の新規なポリフェノール化合物が含まれる。 各溶媒系での液液抽出の回数は2~10回程度が好ましく、5回程度が特に好ましい。 【0033】

上述のようにして得られた酢酸メチル画分から常法に基づき精製することにより、本発 明の新規ポリフェノール化合物が単離され得る。精製方法としては、順相クロマトグラフ

10

20

50

20

50

ィー、逆相クロマトグラフィー、薄層クロマトグラフィー、ゲルろ過クロマトグラフィー 及び高速液体クロマトグラフィー等を挙げることができ、これらのうちの1種又は複数を 組み合わせて精製することが可能である。各種クロマトグラフィーに用いられる担体や溶 出溶媒等は、各種クロマトグラフィーに対応して適宣選択することができる。 【0034】

なお、上述のようにしてイナゴマメの莢果から分離、精製された本発明のポリフェノー ル化合物は、純物質として単離されていなくてもよく、イナゴマメ原料由来の他の成分が 含まれた混合物として用いられてもよい。

【0035】

本発明の新規ポリフェノール化合物は、コラーゲン遺伝子の発現を促進し、生体内での ¹⁰ コラーゲンの産生を促進させるコラーゲン産生促進剤として用いることができる。本発明 の化合物により、コラーゲン産生が促進されることにより、対象細胞でのコラーゲンが増 加する。

[0036]

本発明の新規ポリフェノール化合物を含有するコラーゲン産生促進剤は、皮膚細胞に含 まれるコラーゲン量を増加させ、皮膚の老化を防止又は改善し、皮膚を安定した状態に保 つための皮膚外用剤として用いることができる。また、本発明のコラーゲン産生促進剤は 、皮膚細胞に含まれるコラーゲン量を増加させて、皮膚のシワやたるみを予防又は改善し 、皮膚を健やかに保つ作用を有する化粧料として用いることができる。

【0037】

本発明のコラーゲン産生促進剤の投与量は、目標とするコラーゲン産生促進効果、予防 又は治療効果、投与方法、年齢などによって変化するので一概には規定できないが、外用 剤として用いた場合における、通常一日の非経口的な投与量は、本発明のポリフェノール 化合物として、0.02µg~30mgとすることが好ましく、0.2µg~3mgとす ることがより好ましく、2µg~300µgとすることがさらに好ましい。また、内用剤 として用いた場合における、経口的な投与量としては、本発明のポリフェノール化合物と して、通常一日0.2µg~1000mgとすることが好ましく、2µg~200mgと することがより好ましい。

【0038】

本発明のコラーゲン産生促進剤、皮膚外用剤及び化粧料の剤形は、特に限定されず、例 30 えば、低粘度液体、ローション等の液剤、乳液、ゲル、ペースト、クリーム、フォーム、 パック、軟膏、粉剤、エアゾール又は貼付剤等、並びに錠剤、顆粒剤、カプセル剤又は内 服用液剤等が挙げられる。なお、本発明に係るコラーゲン産生促進剤は、化粧品、医薬部 外品又は医薬品のいずれにも適用することができる。具体的な製品としては、特に限定さ れないが、化粧水、化粧クリーム、化粧乳液、美容液、化粧パック、化粧洗浄料、石鹸、 ヘアケア剤、浴用剤又はメーキャップ化粧料等が挙げられる。

【 0 0 3 9 】

本発明のコラーゲン産生促進剤、皮膚外用剤及び化粧料中において、本発明の新規ポリフェノール化合物の配合濃度は、好ましくは0.0001mM~1mMであり、より好ましくは1µM~100µmMであり、さらに好ましくは5µM~20µMである。新規ポ 40 リフェノール化合物の配合量をこの範囲内とすることにより、本化合物を安定に配合することができ、皮膚への安全性も高く、高いコラーゲン産生促進効果を発揮することができる。

[0040]

本発明のコラーゲン産生促進剤は、従来慣用されている方法により種々の形態に調製す ることができる。この場合、通常製剤用の担体や賦形剤など、医薬品の添加剤として許容 されている添加剤を用いて製剤化することができる。また、本化合物のバイオアベイラビ リティーや安定性を向上させるために、マイクロカプセル、微粉末化、シクロデキストリ ン等を用いた包接化などの製剤技術を含むドラッグデリバリーシステムを用いることもで きる。

(8)

[0041]

また、本発明のコラーゲン産生促進剤、皮膚外用剤及び化粧料には、皮膚外用剤及び化 粧料に通常用いられる成分である水、油脂類、ロウ類、炭化水素類、脂肪酸類、高級アル コール類、エステル類、植物抽出エキス類、ビタミン類、水溶性高分子、界面活性剤、金 属石鹸、アルコール、多価アルコール、pH調整剤、防腐剤、香料、粉体、増粘剤、色素 又はキレート剤等の成分を適宜配合することができる。さらに、本発明の作用効果を損な わない範囲において、通常用いられる各種の機能性成分、例えば、保湿剤、美白剤、抗炎 症剤、細胞賦活剤、紫外線防御剤、血行促進剤及び抗酸化剤等から選ばれる機能性成分の 一種または二種以上と併用することができる。

[0042]

さらに、本発明のコラーゲン産生促進用飲食品は、本発明の新規ポリフェノール化合物 を活性成分として含有している。本発明のコラーゲン産生促進用飲食品は、錠剤やカプセ ル剤、顆粒剤、シロップ剤などのサプリメント形態、清涼飲料、果汁飲料、アルコール飲 料などの飲料、アメやガム、クッキー、ビスケット、チョコレート等の菓子、パン、粥、 シリアル、麺類、ゼリー、スープ、乳製品、調味料等のあらゆる形態とすることができる 。このように飲食品として用いる際には、本発明の有効成分の効能に影響を与えない範囲 において、他の有効成分や、ビタミン、ミネラル若しくはアミノ酸等の栄養素等を種々組 み合わせることも可能である。本発明の飲食品には、サプリメント、健康食品、機能性食 品、特定保健用食品等が含まれる。また、本発明の飲食品の1日あたりの摂取量は、本発 明のポリフェノール化合物として、通常一日0.2 µg~1000mgとすることが好ま しく、2 µg~200mgとすることがより好ましい。

【0043】

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例によっ てなんら限定されるものではない。

- 【実施例】
- [0044]
- 「実施例11
- 1.イナゴマメ莢果の含水アルコール抽出物の調製

採取後、乾燥処理されたイナゴマメ(Ceratonia siliqua)の莢付果 実から種を取り除いた。このイナゴマメの莢果を粉砕機で粉砕して粒径2mm以下の粉砕 物を得た。20kgの粉砕物に対し、140kg(7倍量)の含水95%エタノールを加 え、1.5時間還流抽出する操作を2回行った後、残渣をさらに140kg(7倍量)の 含水70%エタノールで1.5時間還流抽出した。得られた還流抽出液を合わせた後、溶 媒を減圧留去してイナゴマメ莢果の含水エタノール抽出物12.4kgを得た。

- 【0045】
- [実施例2]

2.イナゴマメ莢果の含水アルコール抽出物の分離及び精製

実施例1で得られたイナゴマメ莢果の含水エタノール抽出物を1~10倍量の水に分散 させ、イオン交換樹脂(マクロポーラス吸着樹脂D101、Cangzhou Bon Adsorber Tech nology Co., Ltd.)に吸着させた。カラム容量の3倍量の蒸留水で溶出して糖類等の不純 物を除去した後、カラム容量の3倍量の含水95%エタノールで溶出させ、溶媒を減圧留 去し、462.7gのエタノール溶出画分(非炭水化物系低分子化合物画分)を得た。次 に、得られたエタノール溶出画分を1.0Lの含水50%メタノールに分散させ、石油エ ーテル、酢酸エチルの順に、それぞれ5回ずつ液液抽出を行った。各溶媒を減圧留去して 、石油エーテル画分28.4g、酢酸エチル画分139.4g及び水系画分290.2g をそれぞれ得た。

【0046】

次に、135.0gの酢酸エチル画分について、順相シリカゲルカラムクロマトグラフィー(カラム充填材:200~300メッシュ、青島海洋化工場製品)に供し、石油エー テル(P)/酢酸エチル(E)及びジクロロメタン(C)/メタノール(M)の2つの展 10

20

50

開溶媒を用いて溶出させ、分画を行った。この結果、108個の溶出画分が得られた。得 られた108個の溶出画分について、薄層クロマトグラフィーによる同定を行い、類似す る画分を合わせて10個の溶出画分A~」を得た。 [0047]次に、溶出画分F(8.5g)と溶出画分G(9.6g)について、逆相ODSカラム クロマトグラフィー(カラム充填材:40~63μm、メルク社製品)に供し、メタノー ル:水=15:85 100:0の勾配溶出により分画を行った。得られた溶出画分につ いて、薄層クロマトグラフィーによる同定を行い、類似する画分を合わせて6つの溶出画 分 F 1 ~ F 6 を得た。 [0048]10 次に、溶出画分F4(4.2g)について、ゲルろ過クロマトグラフィー(カラム充填 材:Sephadex LH-20)に供し、ジクロロメタン:メタノール=1:1で溶 出させ、5つの

溶出

画分F4a~F4eを

得た。 [0049]次に、溶出画分 F 4 c (1 . 1 g)をセミ分取 H P L C (カラム I : Y M C - P a c k ODS-A、250×20mm、5µm)に供し、メタノール:水=40:60、検出 波長217nmで分離し、3つの画分F4c1、F4c2及びF4c3を得た。このうち 、画分F4c2をセミ分取HPLC(カラムII:YMC-Pack ODS-A、25 0×10mm、5µm)に供し、メタノール:水=36:64、検出波長217nmで分 20 離して、本発明の化合物(以下、「Ceratonia siligua A」という。) 23.8gを得た(保持時間tR=37.14分)。 $\begin{bmatrix} 0 & 0 & 5 & 0 \end{bmatrix}$ [実施例3] 3.化合物 (Ceratonia siliqua A)の構造解析 実施例2で得られた化合物、「Ceratonia siliqua A」の構造解析 を行った。構造解析にあたり、高分解能質量分析(HR-ESI-MS;負イオンモード)、紫外吸収スペクトル分析、赤外吸収スペクトル分析、¹ H - N M R 、^{1 3} C - N M R 、HMBC、HSQC及びNOESY分析を行った。これらの分析に用いた装置は次のと おりである。 30 ・高分解能質量分析:エレクトロスプレーイオン化四重極飛行時間型質量分析装置(Bruk er Daltonics社製品) ・紫外吸収スペクトル分析:紫外可視分光光度計(UV-2401PC、株式会社島津製 作所製品) ・赤外吸収スペクトル分析:FT-IR(NEXUS470、Thermonicolet社製品) ・NMR分析:600MHz核磁気共鳴装置(AVANCE III 600、Bruker社 製品) [0051]Ceratonia siliqua Aの物理的性質は以下のとおりである。高分解 能質量分析(HR-ESI-MS)のスペクトルを図1に、紫外吸収スペクトル分析の結 40 果を図2に、赤外吸収スペクトル分析の結果を図3にそれぞれ示す。 ・性状: 黄色粉末 • HR - ESI - MS (negative) m/z: 507.1180 [M - H] ・紫外吸収スペクトル: max(MeOH)nm (log):192.2(3.8 2),218.0(4.26),291.0(4.02),322.4(3.95) ・赤外吸収スペクトル(KBr、cm⁻¹): max:3378.33,1699.5 2, 1 6 3 0 . 2 1 , 1 6 0 3 . 8 9 , 1 5 1 5 . 9 0 , 1 4 5 1 . 3 2 , 1 3 5 1 . 1 2,1326.00,1270.16,1214.57,1186.83,1126.0 1,1070.65,1031.88,816.60,765.83,624.09,5 80.17,537.28,522.40 [0052] 50

高分解能質量分析(図1)の結果、準分子イオンピークが、m / z 507.1180 [M-H] ⁻ であることから、組成式はC₂₃H₂₄O₁₃、不飽和度は12と推定された。また、赤外吸収スペクトル(図3)からは、分子内には、水酸基(3378.33cm⁻¹)、ベンゼン環(1603.89cm⁻¹、1515.90cm⁻¹)及びエステル結合(1699.52cm⁻¹、1214.57cm⁻¹)を有することが推測された

【0053】

さらに、¹ H - N M R 分析(溶媒: C D ₃ O D、観測周波数: 6 0 0 M H z)により得 られたスペクトル(図4)からは、一組のトランス - オレフィンプロトンシグナル [: 7 . 6 2 (1 H , d , J = 1 5 . 6 H z , H - 7) , 6 . 3 9 (1 H , d , J = 1 5 . 6 H z , H - 8)]、一組のベンゼン環 A B X 系シグナル [」:7.18 (1 H , s , H - 2), 7.06(1H, d, J = 7.8Hz, H - 6), 6.80(1H, d, J = 7.8Hz,H-5)]、1,3,4,5-置換ベンゼン環の水素シグナル[_H:7. 14(2H, s, H-2, H-6)]、1つのメトキシシグナル[_H:3.88(3H, s, OCH₃-3)]、一組のグルコース残基の水素シグナル[_H:5.68(1 H , d , J = 5 . 4 H z , H - 1) , 4 . 5 2 (1 H , d , J = 1 1 . 4 H z , H -),4.31(1H,m,H-6),3.70(1H,m,H-5),3. 6 51(2H,m,H-2,H-3),3.46(1H,m,H-4)]が確認され た (図 9)。また、¹³C - NMR分析 (溶媒: CD₃OD、観測周波数: 150MHz)により得られたスペクトル(図5)からは、23の炭素シグナルが確認された(図9) 。具体的には、エステルのカルボニル炭素シグナルが2つ(c:169.1,166. 9)、14の芳香族又はオレフィンの炭素シグナル(_c:150.6,149.3,1 47.2,146.5×2,140.4,127.7,124.2,120.6,116 . 4 , 1 1 5 . 2 , 1 1 1 . 6 , 1 1 0 . 6 × 2)、1つのメトキシ炭素シグナル(c : 5 6 . 4) 及び一組のグルコース残基の炭素シグナル(_c: 9 5 . 9 , 7 8 . 0 , 7 6.3,74.1,71.3,64.4)であった。これらの分析結果より、本化合物は 、1つのグルコース残基ユニット、1つのフェルラ酸ユニット及び1つの没食子酸ユニッ トから構成されていることが推測された。

【0054】

また、HMBC分析により得られたスペクトル(図7)からは、H-2とC-4/C-6、H-5とC-1/C-3、H-6とC-4、H-7とC-2/C-6/C-9、H-8とC-1及びOCH₃-3とC-3にロングレンジ相関シグナルが確認された。この結 果より、本化合物の構造にフェルラ酸ユニットが存在することが示された。また、H-2、 、H-6 及びC-4 /C-3 /C-5 /C-7 にロングレンジ相関シグナル が確認されたことから、本化合物の構造に没食子酸ユニットが存在することが示された。 さらに、H-6 とC-9とにロングレンジ相関シグナルが確認されたことから、フェル ラ酸がグルコース残基のC-6 にエステル結合を介して結合していることが示された。 そして、H-1 とC-7 とのロングレンジ相関シグナルから、没食子酸がグルコース 残基の末端の炭素にエステル結合を介して結合していることが示された。 グルコースの末端の炭素にエステル結合を介して結合していることが示された。 として、H-1 とC-7 とのロングレンジ相関シグナルから、没食子酸がグルコース の構造を以下式(I)のとおり決定した。図9に¹H-NMRの _H及び¹³C-N MRの _Cをまとめた帰属表を示す。また、図10にCeratonia siliqua AのNOESY及びHMBCの解析結果を示す。

[0055]

10

20

30

[0056]

[実施例4]

4.Ceratonia siligua Aのコラーゲン遺伝子の発現促進作用の検討 実施例2で得たCeratonia siliqua Aを用いて、ヒト表皮由来角化 細胞株であるHaCaT細胞におけるコラーゲン遺伝子(COL1A1遺伝子)の発現促 進効果を調べた。

【0057】

まず、HaCaT細胞を、DMEM培地(10%FBS及び100U/mLペニシリン 、100µm/mLストレプトマイシンを含む)を用いて、37、5%CO,及び飽和 湿度条件下で培養した。次に、6ウェル細胞培養プレートの各ウェルに、5×10⁵ с е 11s/mLとなるように細胞濃度を調整したHaCaT細胞を播種し、CO,インキュ ベーター(5%CO2、37)で24時間培養した。その後、実施例2で単離したCe ratonia siliqua Aを各ウェルに異なる最終濃度となるように添加した 。具体的には、HaCaT細胞培養液中のCeratonia siligua Aの最 終濃度がそれぞれ、1µM、5µM、10µM、50µM及び100µMとなるようにし た。また、Ceratonia siliqua Aを添加しないウェルを対照(0µM)とした。添加後、24時間培養を行った。

[0058]

培養終了後、各ウェルからHaCaT細胞を回収し、RNA抽出試薬(RNAzol(登録商標)、モレキュラーリサーチセンター社製品)を用いて、total RNAを抽 出した。超微量分光光度計(NanoDrop、サーモフィッシャーサイエンティフィッ ク社製品)を用い、抽出して得られたtotal RNAの濃度を確認した。このtot al RNAに、オリゴdTプライマー、dNTP Mix、5×1stストランドバッ ファー、RNase阻害剤、DTT及びM-MLV逆転写酵素を添加し、total R NAからcDNAを合成した。このcDNAを用い、リアルタイムPCR(OPCR)に よりコラーゲン遺伝子の発現量を測定した。

[0059]

QPCRは、市販のQPCR試薬キットとQPCR測定装置(LightCycler (登録商標) 480、ロシュ・ダイアグノスティックス株式会社製品)を用いて行い、検 出には2本鎖DNA結合蛍光色素であるSYBR(登録商標)Greenを用いた。標的 遺伝子は、I型コラーゲンの 1鎖をコードするCOL1A1遺伝子を選択し、QPCR 用プライマーは下記表1に示す配列番号1、2のプライマーを用いた。

 $\begin{bmatrix} 0 & 0 & 6 & 0 \end{bmatrix}$

【表1】

フォワードプライマー	5' - TOTOCOACAACOOCAAGOTO -3'	配列番号1
リバースプライマー	5' - GACGCOGGTGGTTTCTTGGT -3'	配列番号2

10

20

40

[0061]

結果を図11に示す。コラーゲン遺伝子(COL1A1遺伝子)のmRNA発現量は、 対照(コントロール)の発現量を100としたときの相対値として示している。図11に 示すように、本発明の化合物、Ceratonia siliqua Aを添加すること により、未添加の対照と比較して、コラーゲン遺伝子の発現量が大きく増加することが明 らかとなった。Ceratonia siliqua Aの濃度が1µMでも、コラーゲ ン遺伝子の発現量は約2倍に増加しており、10µMではコラーゲン遺伝子の発現量が3 倍以上に増加し、発現促進作用が最も高くなることがわかった。

【0062】

本発明は、上記の実施形態又は実施例に限定されるものでなく、特許請求の範囲に記載 ¹⁰ された発明の要旨を逸脱しない範囲内での種々、設計変更した形態も技術的範囲に含むも のである。

【産業上の利用可能性】

【0063】

本発明の新規ポリフェノール化合物は、コラーゲン産生促進剤、皮膚外用剤及び化粧品 として使用され、医療や美容の分野において幅広く利用されるものである。 【要約】

【課題】イナゴマメ由来の新規な活性成分及びその用途を提供すること。

【解決手段】本発明は、下記式(I)で表される化合物若しくはその塩又はそれらの溶媒 和物である。

(1)

【選択図】なし

20

30

【図11】

【配列表】 0006976014000001.app フロントページの続き

(51)Int.CI.	FI				
A 6 1 Q	19/00	(2006.01)	A 6 1 Q	19/00	
A 2 3 L	33/105	(2016.01)	A 2 3 L	33/105	ΖΝΑ
A 6 1 K	36/48	(2006.01)	A 6 1 K	36/48	
A 6 1 K	8/9789	(2017.01)	A 6 1 K	8/9789	

(72)発明者 トウ テイ カ

中華人民共和国香港九龍清水湾香港科技大学学術ビル6244室 (72)発明者 ホウ チ テン

中華人民共和国広東省深 セン 市南山区高新技術産業園南区粤興一道9号香港科大深 セン 産 学研究ビル712室

(72)発明者 オウ カイ ユウ
 中華人民共和国広東省深 セン 市南山区高新技術産業園南区粤興一道9号香港科大深 セン 産
 学研究ビル712室

(72)発明者 ジェームス ウエイ 東京都千代田区神田神保町3丁目10 株式会社ナボカルコスメティックス内

審査官 三上 晶子

- (56)参考文献 韓国公開特許第10-2006-0093164(KR,A) 特表2010-504299(JP,A)
- (58)調査した分野(Int.Cl., DB名) C07H CAplus/REGISTRY(STN)

<u>角豆树果荚中天然小分子化合物角豆树素A和活性评价</u> 研究

Project held by:

Center for Chinese Medicine R & D

The Hong Kong University of Science and Technology

香港科技大学中药研发中心

Jul.23, 2020

1 实验目的

以LC-MS/MS为导向对角豆树果荚中的天然小分子化学成分进行系统分离、 波普解析和结构鉴别;对分离得到的新化合物进行体外活性评价,筛选出具有特 定活性的新化合物。

2 材料与仪器

2.1 材料

药材: 豆科长豆角属植物角豆树(拉丁学名: Ceratonia siliqua Linn.)干燥的果荚。角豆树果荚 2018 年 8 月采自欧洲,存放于香港科技大学深圳研究院中药研发中心。

2.2 仪器

AVANCE III 600 MHZ 超导核磁共振波谱仪(瑞士 Bruker 公司); maXis impact 高分辨电喷雾四级杆-飞行时间质谱仪(美国 Bruker Daltonics 公司); 汉 邦科技半制备液相(NP7005C 液相输液泵, NU3000C 紫外可变波长检测器, EasyChrom-1000 工作站,中国汉邦科技有限公司); Waters 2695 高效液相色谱 仪(美国 Waters 公司); Nexus470 傅立叶红外光谱仪(美国热电尼高力公司); UV-2401PC 紫外可见分光光度仪(日本岛津公司); ZF-1 型三用紫外分析仪(江 苏海门市其林贝耳仪器制造有限公司); 电热套; Adam SAB225i 半微量分析天 平(Max 220 g, d = 0.01 mg, 英国 Adam 公司); Merck Direct-Q 超纯水系统(德 国 Merck Millipore 公司); DLSB-5/20 低温冷却液循环泵(郑州长城科工贸有限 公司); 旋转蒸发仪(瑞士 BUCHI 公司); DZF-6020 真空干燥箱(上海一恒科 学仪器有限公司)。

2.3 试剂

石油醚(广东光华科技有限公司,Lot.No.20180905)、二氯甲烷(西陇科学股份有限公司,Lot.No.190411)、乙酸乙酯(天津市永大化学试剂有限公司, Lot.No.20170309)、乙醇(西陇科学股份有限公司,Lot.No.191109)、甲醇(西 陇科学股份有限公司,Lot.No.191109)等均为分析纯;HPLC级甲醇(德国 Merck 公司);超纯水(Merck Direct-Q 超纯水系统)。

3 角豆树素分离纯化

称取角豆树果荚粗粉 20.0kg, 加入 7 倍重量份的 95%乙醇回流提取 2 次(每次 1.5h),再用 7 倍重量份的 70%乙醇回流提取 1 次(1.5h),合并后回收溶剂得 到浸膏 12.4kg。将浸膏用 1-10 倍重量份的水分散后,经大孔吸附树脂 D101 进行 吸附,用蒸馏水洗脱三个柱体积除去糖类等杂质,再用 95%乙醇洗脱 3 个柱体积,回收溶剂后得到非糖类小分子部位 462.7g。将得到的非糖类小分子部位用 1.0L50%甲醇分散,依次使用石油醚、乙酸乙酯分别萃取 5 次,回收溶剂后分别 得到石油醚部位 28.4g、乙酸乙酯部位 139.4g 和水部位 290.2g。

称取乙酸乙酯部位 135.0g, 经硅胶 (200~300 目) 柱色谱分离, 采用石油 醚 (P) -乙酸乙酯 (E)、二氯甲烷 (C) -甲醇 (M) 两个洗脱系统, 得到 108 个 流分, 通过 TLC 薄层检识, 合并成分相似流分, 得到 10 个流分 (Fr.A~J)。流 分 Fr.F (8.5g) 经 ODS 柱色谱, 甲醇-水 (15: 85→100: 0) 梯度洗脱, 将得到 流分经 TLC 检识后合并, 得到 6 个流分 (Fr.F1~F6)。Fr.F4 (4.2g) 经 SephadexLH-20 柱色谱分离, 二氯甲烷-甲醇 (1: 1) 洗脱, 得到 5 个流分 (Fr.F4a ~F4e)。Fr.F4c (1.1g) 经半制备液相 (柱 I, 甲醇: 水=40: 60, 吸收波长 217nm) 分离, 得到 3 个流分 (Fr.F4c1~Fr.F4c3)。Fr.F4c2 经半制备液相 (柱 II, 甲醇: 水=36: 64, 吸收波长 217nm) 纯化, 得到角豆树素 A (23.8mg,tR=37.14min)。

4 角豆树素 A 结构解析

该化合物为黄色粉末,负离子模式 HR-ESI-MS 给出准分子离子峰 m/z 507.1180 [M-H]一,推断该化合物的分子式 C23H24O13,计算不饱和度为 12。 红外数据显示(图 1),分子结构中含有羟基(3378.33 cm-1)、芳香环(1603.89, 1515.90 cm-1)和酯键(1699.52, 1214.57 cm-1)等官能团。在 1H NMR 中(图 2),观察到一组反式烯烃质子信号[δ H 7.62 (1H, d, J = 15.6 Hz, H-7), 6.39 (1H, d, J = 15.6 Hz, H-8)] 一组苯环 ABX 系统信号[δ H 7.18 (1H, s, H-2), 7.06 (1H, d, J = 7.8 Hz, H-6), 6.80 (1H, d, J = 7.8 Hz, H-5)],一组 1,3,4,5-取代苯环氢信号[δ H 7.14 (2H, s, H-2', 6')],一个甲氧基信号[δ H 3.88 (3H, s, OCH3-3)],一组葡萄糖残基氢信号[δ H 5.68 (1H, d, J = 5.4 Hz, H-1"), 4.52 (1H, d, J = 11.4 Hz, H-6 α "), 4.31 (1H, m, H-6 β "), 3.70 (1H, m, H-5"), 3.51 (2H, m, H-2", 3"), 3.46 (1H, m, H-4")]。

在 13C NMR 中 (图 3) 观察到 23 个碳信号,包括 2 个酯羰基碳信号 (δC 169.1, 166.9),14 个芳香碳或烯碳信号 (δC 150.6,149.3,147.2,146.5-2,140.4,127.7, 124.2,120.6,116.4,115.2,111.6,110.6-2),1 个甲氧基碳信号 (δC 56.4),1 组葡萄糖残基碳信号 (δC 95.9,78.0,76.3,74.1,71.3,64.4)。综合以上分析及文献对比,推断该化合物由 1 个葡萄糖残基、1 个阿魏酸和 1 个没食子酸结构单元组合而成。

Page 4 of 8

在 HMBC 谱中(图 4-8),观察到 H-2 和 C-4/C-6, H-5 和 C-1/C-3, H-6 和 C-4, H-7 和 C-2/C-6/C-9, H-8 和 C-1, OCH3-3 和 C-3 有远程相关信号,证明该 化合物的结构中存在阿魏酸结构单元的推断;此外,H-2′,6′和 C-4′/C-3′/C-5′/C-7′的远程相关信号也证明该化合物的结构中存在没食子酸结构单元的 推断。在 HMBC 谱中还观察到 H-6″和 C-9 有远程相关信号,表明阿魏酸通过 酯键与葡萄糖残基的 C-6″相连接,而 H-1″和 C-7′的远程相关信号表明没食 子酸通过酯键与葡萄糖残基的端基碳相连接。葡萄糖端基质子的偶合常数为 5.4 Hz,表明葡萄糖的端基相对构型为α型。因此,鉴定该化合物的结构如图 9 所 示,命名角豆树素 A。

图 4 角豆树素 A 主要 HMBC 和 NOESY 相关图

图 5 角豆树素 A 的 HSQC 谱图

图 8 角豆树素 A 高分辨质谱图

图 9 角豆树素 A 的结构图

5 角豆树素 A 对 NF-кB 炎症因子影响的测试

对 NF-κB 炎症因子影响的实验包括以下步骤:

(1)培养 RAW264.7 细胞:在 37℃,5%CO² 及饱和湿度条件下,将细胞置 于 DMEM 培养基(含 10%热灭活的胎牛血清,100U/mL 青霉素及 100µm/mL 链 霉素)。

(2)将 RAW264.7 细胞以 5×10⁴/mL 接种于 24 孔板中,待细胞培养至约 60% 汇合后,使用 JetPrime 转染试剂盒进行 NF-κB 质粒转染,以培养基为空白对照, 地塞米松(20μM)为阳性对照;样品为不同浓度的角豆树素 A。对照和样品分 别加入 NF-κB 质粒转染的 RAW264.7 细胞中,进行预处理 3 小时,再加入脂多 糖(1ug/mL)诱导炎症发生。每组 3 个复孔培养,实验重复 3 次。

(3)24小时后提取细胞蛋白,用荧光酶报告基因检测法对比荧光蛋白及总蛋白的比例。

结果如图 10 示,不同浓度角豆树素 A 均具有抑制 NF-κB 炎症因子的作用。 当角豆树素 A 在 10μM 时,抑制 NF-κB 炎症因子的活性最好。

图 10 不同浓度角豆树素 A 对由脂多糖 LPS 诱导的炎症因子 NF-кB 抑制活性

6角豆树素 A 对胶原蛋白因子 COL1A1 基因表达影响的测试

角豆树素 A 对胶原蛋白因子 COL1A1 基因表达影响的实验包括以下步骤:

(1)培养 HaCaT (细胞人永生化表皮细胞):在 37℃,5% CO² 及饱和湿度 条件下,将细胞置于 DMEM 培养基(含 10%热灭活的胎牛血清,100 U/mL 青霉 素及 100 μm/mL 链霉素)。

(2)将 HaCaT 细胞(人永生化表皮细胞)制成细胞浓度为 5×10⁵ 个/mL 的 悬浮液并接种在 6 孔板中。放入 CO2 培养箱(5% CO²、37℃)中培养 24 小时, 然后分别加入不同浓度的角豆树素 A。继续培养 24 小时后,收集细胞提取 mRNA。

(3) 提取 RNA: 24 小时后,先把培养液抽走,再利用 RNAzol RNA 抽提 试剂,把细胞的 RNA 提取出,之后用 Nanodrop 量度 RNA 的浓度。然后,再利 用 Oligo (dT)、dNTP、5X first strand buffer、重组核糖核酸酶抑制剂 (RNaseOUT inhibitor)、二硫苏糖醇 (DTT) 及鼠白血病逆转录酶 (M-MLV),把 RNA 反转 录为 cDNA,以进行实时聚合酶链锁反应 (rt-PCR, Real-time Polymerase China Reaction)。

(4) 实时聚合酶链锁反应:利用荧光染剂侦测,从而量化样本中目标基因 (COL1A1 基因)数量的技术,而此技术容许技术人员使用不同容量的孔板,以 同一时间侦测多个反应。在每个反应中,加入 cDNA 样本、上游引物、下游引 物及 SybrGreen 荧光染剂,引物序列如下: COL1A1 F-引物 5′-TCT GCG ACA ACG GCA AGG TG-3′, COL1A1R-引物 5′-GAC GCC GGT GGT TTC TTG GT-3′,再利用 LightCycler®480 侦测细胞在不同药物下,细胞基因表达的变化。

结果见图 11 不同浓度的角豆树素 A 可以促进 COL1A1 基因表达, 其中当角 豆树素 A 在 10µM 时, 促进胶原蛋白 COL1A1 基因表达活性最好。

图 11 不同浓度角豆树素 A 对 COL1A1 基因表达的影

角豆樹果莢中の天然小分子化合物角豆樹素Aと活性評

<u>価研究</u>

Project held by:

Center for Chinese Medicine R & D

The Hong Kong University of Science and Technology

香港科学技術大学漢方薬研究開発センター

Jul.23, 2020

1 実験目的

LC-MS/MSをガイドとして角豆樹果莢中の天然小分子化学成 分を系統的に分離し、ポピー解析と構造鑑別を行う、分離して得ら れた新規化合物をinvitro活性評価し、特定の活性を有する新規化 合物をスクリーニングした。

2 材料と機器

2.1 ざいりょう

薬剤:マメ科長マメ科植物角マメの木(ラテン学名:Ceratonia siliqua Linn.)乾燥した莢。角豆樹果莢は2018年8月にヨーロッパから採取され、香 港科学技術大学深セン研究院漢方薬研究開発センターに保管されている。

2.2 きぐ

AVANCE III 600 MHZ超伝導核磁気共鳴分光器 (スイスBruker社)、maXis impact高分解能電気噴霧四段ロッド-飛行時間質量分析計 (米国Bruker Daltonics 社)、漢邦科技半調製液相 (NP 7005 C液相輸液ポンプ NU 3000 C紫外可変波長 検出器、EasyChrom-1000ワークステーション、中国漢邦科技有限公司)、Waters 2695高効率液体クロマトグラフィー (米国Waters社)、Nexus 4 70 Fourier赤外分光 器 (米国サーモニクス社)、UV-24 01 PC紫外可視分光光度計 (島津ジャパン)、 ZF-1型三用紫外線分析器 (江蘇海門市其林貝耳計器製造有限公司)、電気ジャ ケットAdam SAB 225 i半微量分析天秤 (Max 220 g、d =0.01 mg、英Adam社)、 Merck Direct-Q超純水システム(ドインMerck Millipore社)、DLSB-5/20低温冷却液 循環ポンプ (鄭州長城科工貿有限公司)、回転蒸発器 (スイスBUCHI社)、 DZF-6020真空乾燥箱 (上海一恒科学計器有限公司)。

2.3 しやく

石油エーテル(広東光華科学技術有限公司、Lot.No.20180905)、ジク ロロメタン(西隴科学株式会社、Lot.No.190411)、酢酸エチル(天津市永 大化学試薬有限公司、Lot.No.20170309)、エタノール(西隴科学株式会社、

Lot.No.191109)、メタノール(西隴科学株式会社、Lot.No.191109)など はすべて分析純である、HPLC級メタノール(ドイツMerck社)、超純水 (Merck Direct-Q超純水システム)。

3 クマリン分離精製

角豆樹果莢粗粉20.0 kgを秤量し、7倍重量部の95%エタノール還流を加え て2回(毎回1.5h)抽出し、さらに7倍重量部の70%エタノール還流で1回(1.5 h)抽出し、合併後溶媒を回収してエキス12.4 kgを得た。エキスを1~10倍重 量部の水で分散した後、大孔吸着樹脂D101を経て吸着し、蒸留水で3つのカラ ム体積を溶出して糖類などの不純物を除去し、さらに95%エタノールで3つのカ ラム体積を溶出し、溶媒を回収した後、非糖類小分子部位462.7 gを得た。得ら れた非糖類小分子部位を1.0L50%メタノールで分散し、石油エーテル、酢酸エ チルを順次用いてそれぞれ5回抽出し、溶媒を回収した後、石油エーテル部位 28.4 g、酢酸エチル部位139.4 g、水部位290.2 gをそれぞれ得た。

酢酸エチル部位135.0gを秤量し、シリカゲル(200~300目)カラムク ロマトグラフィーにより分離し、石油エーテル(P)--酢酸エチル(E)、ジク ロロメタン(C)--メタノール(M)の2つの溶出システムを用いて108個の流 分を得、TLC薄層検査により、成分類似流分を合併し、10個の流分(Fr.A~J) を得た。流分Fr.F(8.5g)はODSカラムクロマトグラフィー、メタノール--水 (15:85→100:0)勾配を経て溶出し、得られた流分はTLC検査を経て合併 し、6つの流分(Fr.F1~F6)を得た。Fr.F4(4.2g)をSephadexLH-20カ ラムクロマトグラフィーにより分離し、ジクロロメタン-メタノール(1:1) を溶出し、5つの流分(Fr.F4a

~F4e)。Fr.F4c(1.1g)を半調製液相(カラムI、メタノール:水
=40:60、吸収波長217 nm)で分離し、3つの流分(Fr.F4c
1~Fr.F4c3)を得た。Fr.F4c2は、半調製液相(カラムII、メタノール:水=36:64、吸収波長217 nm)により精製され、クマリンA

(23.8 mg、tR=37.14 min)を得た。4角豆樹素A構造解析

この化合物は黄色粉末であり、負イオンモードHR-ESI-MSはエキシ マイオンピークm/z 507.1180 [M-H] -を与え、この化合物の分子式C 23H24O13を推定し、不飽和度を12と計算した。赤外線データによる と (図1) 、分子構造中に水酸基 (3378.33 cm-1) 、芳香環 (1603.89、151.90 cm-1)及びエステル結合 (1699.52、1214.57 cm-1)などの官能基が含まれている。1 HNMR (図 2)トランスオレフィンプロトン信号のセットが観察された[δH 7.62 (1H, d, J = 15.6 Hz, H-7), 6.39 (1H, d, J = 15.6 Hz, H-8)], 一組苯环 ABX系统信号[δH 7.18 (1H, s, H-2), 7.06 (1H, d, J = 7.8 Hz, H-6), 6.80 (1 H, d, J = 7.8 Hz, H-5)], 1, 3, 4, 5-置換べせど環水素信号 [δH 7.14 (2H, s, H-2', 6')]、メトキシ信号 [δH 3.88 (3 H, s, OCH 3-3)]、グルコーズ残基水素 信号のセット[δH 5.68 (1H, d, J = 5.4 Hz, H-1"), 4.52 (1H, d, J = 11.4 Hz, H-6α"),

4.31 (1H,

m, H-6β"), 3.70 (1H, m, H-5"), 3.51 (2H, m, H-2", 3"), 3.4 6 (1H, m, H-4 ")]_o

13CNMR (図3) において、2つのエステルカルボニル炭素信号 (@169.1,

166.9)、14 個の芳香族炭素またはオレフィン炭素信号 (δC 150.6, 14 9.3, 14 7.2, 14 6.5×2, 14 0.4, 127.7,

124.2, 120.6, 116.4, 115.2, 111.6, 110.6×2)、1個のメトキシカーボン信号(&C 56.4)、グルコ 群

グルコース残基炭素信号(& 95.9, 78.0, 76.3, 74.1, 71.3, 64.4)。以上の分析 と文献対を総合する

比を用いて、この化合物はグルコース残基1個、フェルラ酸1個、没食子酸構造

単位1個を組み合わせたものと推定される。

図2クマリンAの1HNMRスペクトル (CD3OD、600MHz)

図3クマリンAの13CNMR (CD30D、150MHz)

HMBCスペクトル (図4-8) において、H-2とC-4/C-6、H-5とC-1/C-3、 H-6とC-4、H-7とC-2/C-6/C-9、H-8とC-1、OCH 3-3とC-3に遠隔相関信 号が観察され、この化合物の構造中に魏酸構造単位の推定が存在することを証明し た。さらに、H-2'、6'及びC-4'/C-3'

/C-5'/C-7'の遠隔相関信号も、化合物の構造中に没食子酸構造単位の推定が存在 することを証明している。HMBCスペクトルコよ H-6"及びC-9にも遠隔相関信号が観察 され、フェルラ酸はエステル結合を介してグルコース残基のC-6"と結合し、H-1"及びC-7'の 遠隔相関信号は没食子酸がエステル結合を介してグルコース残基の末端基炭素と結合し ていることを示している。グルコース末端基陽子のカップリング定数は5.4 である Hzは、グルコースの末端基の相対配置がなを選択して設定できます。したがって、この化合 物の構造を同定することは、図9に示すように、クマリンAと命名される。

図4角豆樹素Aの主要HMBCとNOESY相関図

Page 8

図5角豆樹素AのHSQCスペクトル

図7クマリンAのNOESYスペクトル

図8角豆樹素A高分解能質量分析図

図9クマリンAの構成図

5 クマリンA対NF- B炎症因子影響の試験

NF-B炎症因子の影響の実験には、以下の手順が含まれる。

(1) RAW 264.7細胞の培養:37°C、5%CO 2及び飽和湿度条件下で、細胞をDMEM培地(10%熱不活性化ウシ胎児血清、100 U/mLペニシリン及び100 µm/mLストレプトマイシン)。

(2) RAW264.7細胞を5×104/mLを24ウェルプレートに播種し、細胞を約60%合 流まで培養した後、JetPrimeトランスフェクションキットを用いてNF-ルBプラスミドト ランスフェクション、培地を空白対照として、デキサメタゾン(20ルM)は陽性対照であ る、試料は異なる濃度のクマリンAであった。対照とサンプルをそれぞれNF-ルBプラスミ ドトランスフェクションしたRAW264.7細胞に、3時間前処理を行い、リポ多糖(1 ug/mL)を加えて炎症発生を誘導した。各グループに3つの複孔培養を行い、実験を3回 繰り返した。

(3)24時間後に細胞蛋白を抽出し、蛍光酵素を用いて遺伝子検出法に よる蛍光蛋白及び総蛋白の比率を報告する。

結果:図10に示すように、異なる濃度のクマリンAはすべて抑制NF-B炎症因

子の作用。クマリンAが10µMの場合、NF-AB炎症因子の活性が最もよい。

図10リポ多糖LPSにより誘導される炎症因子NF--B抑制活性

6コラーゲン因子COL1A1の遺伝子発現に対するケラチンAの影響試験

コラーゲン因子COL1A1の遺伝子発現に及ぼすクマリンAの影響の実験には、以下の手順が含まれる:

(1) 培養HaCaT(細胞ヒト永久生化学表皮細胞):37°C、5%CO2及び飽 和湿度条件下で、細胞をDMEM培地(10%熱不活性化ウシ胎児血清、100U/mL ペニシリン及び100 μm/mLストレプトマイシン)。

(2) HaCaT細胞(ヒト永生化表皮細胞)を細胞濃度5×105個/mLの懸濁液を6ウ ェルプレートに播種した。CO2培養箱(5%CO2、3プC)に入れて24時間培養した後、 それぞれ異なる濃度のクマリンAを加えた。24時間培養を続けた後、細胞を集めて mRNAを抽出した。

(3) RNA抽出:24時間後、培養液を吸引し、RNAzol RNA抽出試薬を利用して細胞のRNAを抽出し、その後NanodropでRNAの濃度を測定した。その後、オリゴ(dT)、dNTP、5X first strand buffer、組換えリボヌクレアーゼ阻害剤(RNaseOUTInhibitor)、ジチオカルバノール(DTT)及びマウス白血病逆転写酵素(M-MLV)を再利用して、リアルタイムポリメラーゼ連鎖反応(rt-PCR、Real-time Polymerase China Reaction)を行うためにRNAをcDNAに逆転写した。

(4) リアルタイムポリメラーゼ連鎖反応: 蛍光染料を用いて検出し、サンプル中の標的遺伝子を定量化する

(COL1A1遺伝子)数の技術であり、この技術により、技術者は異なる容量 のオリフィスプレートを使用して、同じ時間に複数の反応を検出することが できる。各反応において、cDNAサンプル、上流プライマー、下流プライマー 及びSybrGreen蛍光染色剤を添加し、プライマー配列は以下の通りである: COL1A1F-プライマー5'-TCTGCGACAACGGCAAGGTG-3'、COL1A 1R-プライマー5'-GCCGGTTTG

GT-3'、LightCyclerを再利用®4 80細胞の異なる薬物下での細胞遺伝子発現の変化を検 出する。結果:図11の異なる濃度のソメトキシンAはCOL1A1遺伝子発現を促進す Page 13

ることができ、その中で角

豆樹素Aは10µMでコラーゲンCOL1A1遺伝子の発現活性を促進するのが最もよい。

図11COL1A1遺伝子発現に対する異なる濃度のクマリンAの影

Natural Product Research Formerly Natural Product Letters

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gnpl20

Novel phenylpropanoids and isoflavone glycoside are isolated and identified from the carob pods (*Ceratonia siliqua* L.)

Zhi-Tian Peng, Ying-Jie Xia, Takuya Yashiro, Xiong Gao, Tina Ting-Xia Dong, Karl Wah-Keung Tsim & Huai-You Wang

To cite this article: Zhi-Tian Peng, Ying-Jie Xia, Takuya Yashiro, Xiong Gao, Tina Ting-Xia Dong, Karl Wah-Keung Tsim & Huai-You Wang (2022): Novel phenylpropanoids and isoflavone glycoside are isolated and identified from the carob pods (*Ceratonia siliqua* L.), Natural Product Research, DOI: <u>10.1080/14786419.2022.2076230</u>

To link to this article: <u>https://doi.org/10.1080/14786419.2022.2076230</u>

View supplementary material 🖾

d)	h	0	
H	Ŧ	Ŧ	1
Ш	1	Ť.	1

Published online: 14 May 2022.

e	_		-	c
E				
E		- 4		۲
ĸ		æ	g,	Ε.
н		-	ε.	

Submit your article to this journal 🖾

View related articles 🗹

View Crossmark data 🔄

Check for updates

Novel phenylpropanoids and isoflavone glycoside are isolated and identified from the carob pods (*Ceratonia siliqua* L.)

Zhi-Tian Peng^a, Ying-Jie Xia^b, Takuya Yashiro^c, Xiong Gao^b, Tina Ting-Xia Dong^{a,b}, Karl Wah-Keung Tsim^{a,b} and Huai-You Wang^{a,d}

^aShenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China; ^bDivision of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; ^cCosmetic Division, Nabocul Cosmetics Company Limited, Tokyo, Japan; ^dInstitute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China

ABSTRACT

Two new phenylpropanoids (1 and 2) and one new isoflavone glycoside (3), along with nine known compounds (4 – 12), were isolated from the pod of *Ceratonia siliqua* L. Their chemical structures were elucidated based on extensive spectroscopic analyses (1 D and 2 D NMR, UV, IR, and HRESIMS) and compared with the literature data. In addition, all isolated compounds were evaluated *in vitro* for inhibitory activity against acetylcholinesterase (AChE). Compounds **4**, **5**, and **12** showed inhibitory activity against acetylcholinesterase (AChE) with IC₅₀ values ranging from 15.0 to 50.2 μ M.

ARTICLE HISTORY

Received 22 March 2022 Accepted 6 May 2022

KEYWORDS

Ceratonia siliqua L.; phytochemical; phenylpropanoid; isoflavone; acetylcholinesterase inhibition

CONTACT Huai-You Wang 🖾 wanghy707@163.com

Supplemental data for this article can be accessed online at https://dx.doi.org/10.1080/14786419.2022.2076230.
 2022 Informa UK Limited, trading as Taylor & Francis Group

1. Introduction

The dried bean pod of *Ceratonia siliqua* L., also called carob tree belonging to the genus Leguminosae (Fabaceae) family, is an evergreen tree mainly distributed in Mediterranean region, such as Italy, Spain, Morocco and Portugal (Stavrou et al. 2018). The mature pod of *C. silique* having the length of 10–25 cm consists of about 10% seeds and 90% pulp, and which has been found to contain various constituent, including carbohydrates (40–60%), dietary fibers (27–50%), polyphenols, protein, lipids and minerals, etc. (Rtibi et al. 2017). The categories of polyphenols being identified from *C. silique* are including phenolic acids, flavonoids, tannins, lignans and stilbenes. The pods can be included as animal feed. Due to its high content of sugar and no toxicological sign, the pod of *C. silique* is commonly employed in food industry as locust bean gum, and which is also consumed as candy for children in ancient times or in emergency situations, e.g., war (Owen et al. 2003). The roasted and ground pods are having similarity in flavor to cocoa, and therefore the pod is often being included as a chocolate or cocoa substitute. The production is about 315,000 tons per year in the world.

In addition, the pod of *C. silique* has been employed as folk medicine in the treatment of diarrhoea, heartburn, vomiting, obesity, high cholesterol and pregnancy conditions (Custodio et al. 2011). The pharmacological properties of *C. silique* pod have been proposed in anti-inflammatory, antioxidant, anti-microbial, anti-ulcer, anti-diarrheal and anti-diabetic, anti-depressant, etc (Agrawal et al. 2011; Custódio et al. 2015; Rtibi et al. 2017). Several lines of evidence have shown multiple pharmacological activities of *C. silique* are linking to polyphenols (Owen et al. 2003). In order to discover the biologically active ingredients, the objective of the present study was to investigate the chemical constituents of *C. silique* pod. Two new phenylpropanoids and one new isoflavone glycoside, together with nine known compounds, were identified. Herein, the isolation and structural elucidation of the isolated compounds, as well as their inhibitory activity against acetylcholinesterase (AChE), were described.

2. Results and discussion

From the extract of pod of *C. silique*, twelve compounds were isolated and identified (Figure 1). Compounds 1 - 3 have not been known or identified in *C. siliqua*. The other isolated compounds (4 - 12) having known identity were (75,8R)-dihydrodehydrodiconiferyl alcohol (4) (Park et al. 2011), (+)-syringaresinol (5) (Park et al. 2009), (+)-lirioresinol-A (6) (Liu et al. 2013), 1-feruloyl- β -D-glucopyranoside (7) (Kim et al. 2011), syringin (8) (Kiem et al. 2003), 1'-O-coumaroyl-6'-O-galloyl- β -D-glucopyranose (9) (Aliotta et al. 1992), trilepisiumic acid (10) (Ango et al. 2012), dihydrosyringenin (11) (Rustaiyan et al. 1991), pyrocatechol (12) (Feng et al. 2011) by comparison of their spectroscopic data with the one reported in literatures.

Compound **1** was obtained as a yellow powder. Its molecular formula was determined to be $C_{23}H_{24}O_{13}$ based on negative-ion HRESIMS (m/z 507.1180 [M - H]⁻), indicating 12 indices of hydrogen deficiency (Supplementary material, Figure S1). The IR spectrum (Supplementary material, Figure S3) showed the presence of hydroxy (3378 cm⁻¹), carbonyl (1700, 1215 cm⁻¹) and aromatic ring (1604, 1516 cm⁻¹)

Figure 1. Chemical structure of compounds 1-12 from C. siliqua.

functionalities. In the ¹H NMR spectrum (Supplementary material, Figure S4), two olefinic hydrogens [$\delta_{\rm H}$ 7.62 (1H, d, J=15.6 Hz), 6.39 (1H, d, J=15.6 Hz)], 1,3,4-trisubstituted phenyl group [$\delta_{\rm H}$ 7.18 (1H, s), 7.06 (1H, d, J=7.8 Hz), 6.80 (1H, d, J=7.8 Hz)], 1,3,4,5-tetrasubstituted phenyl group [$\delta_{\rm H}$ 7.14 (2H, s)], one methoxy group [$\delta_{\rm H}$ 3.88 (3H, s)] and one set of glucose residue group [$\delta_{\rm H}$ 5.68 (1H, d, J=5.4 Hz), 4.52 (1H, d, J=11.4 Hz), 4.31 (1H, m), 3.70 (1H, m), 3.51 (2H, m), 3.46 (1H, m)] were observed. The ¹³C NMR (Supplementary material, Figure S5) spectrum of **1** revealed the occurrence of 23 carbon resonances attributed to two ester carbonyl ($\delta_{\rm C}$ 169.1, 166.9), five oxygenated sp^2 tertiary ($\delta_{\rm C}$ 150.6, 149.3, 146.5 × 2, 140.4), two sp^2 quaternary ($\delta_{\rm C}$ 127.7, 120.6), seven sp^2 methine ($\delta_{\rm C}$ 147.2, 124.2, 116.4, 111.6, 110.6 × 2, 115.2), one methoxy ($\delta_{\rm C}$ 56.4), one set of glucose residue group ($\delta_{\rm C}$ 95.9, 78.0, 76.3, 74.1, 71.3, 64.4) carbons. These NMR spectroscopic data suggested that compound **1** comprised one set of glucose residue group and galloyl group and feruloyl group (Yang et al. 2006).

In the HMBC spectrum (Supplementary material, Figure S7), the correlations from H-2 to C-4/C-6, H-5 to C-1/C-3, H-6 to C-4, H-7 to C-2/C-6/C-9, H-8 to C-1, OCH₃-3 to C-3, along with the NOESY (Supplementary material, Figure S8) correlation of OCH₃-3 with H-2 confirmed the presence of feruloyl group. Subsequently, the galloyl group was verified on the basic of HMBC correlations from H-2"/H-6" to C-3"/C-4"/C-5"/C-7" (Supplementary material, Figure S7). Furthermore, the HMBC correlations from H₂-6' to C-9, H-1' to C-7" suggested that feruloyl and galloyl group were connected to the C-6' and C-1' of glucose residue, respectively (Supplementary material, Figure S7). The measurement of the optical rotation value of **1** indicated the absolute configuration of glucose was *D*-type. The relative configuration of *D*-glucose was determined as α -type due to the coupling constant of glucose terminal hydrogen $\delta_{\rm H}$ 5.68 (1H, d, J=5.4 Hz, H-1"). Thus, the structure of **1** was established as 1'-O-galloyl-6'-O-feruloyl- α -D-glucopyranose.

Compound **2**, yellow powder, was determined to access to the molecular formula $C_{21}H_{30}O_{10}$, as deduced from positive-ion HRESIMS (m/z 465.1983 [M + Na]⁺), with 7 indices of hydrogen deficiency (Supplementary material, Figure S9). The ¹H and ¹³C NMR data (Supplementary material, Table S2) of **2** were similar to those of syringin

(Kiem et al. 2003) with the exception of an extra isobutyryl group. Analysis of its 1 D and 2 D NMR data indicated that the hydroxy attached to C-9 in syringin was replaced by isobutyryl group in **2**. This deduction was verified by HMBC correlations (Supplementary material, Figure S15) from H₃-3' to C-1'/C-4', H-2' to C-1'/C-4', H₂-9 to C-1'. The measurement of the optical rotation value of **2** exhibited the presence of *D*-glucose. The relative configuration of *D*-glucose was determined as β -type based on the coupling constant of glucose terminal hydrogen $\delta_{\rm H}$ 4.89 (1H, d, J = 7.8 Hz, H-1"). Thus, the structure of **2** was established as 9-isobutyryl syringing.

Compound **3** was obtained as yellow powder, with the molecular formula of $C_{23}H_{24}O_{11}$ as determined on the basis of the positive-ion HRESIMS (*m/z* 499.1266 $[M + Na]^+)$ (Supplementary material, Figure S16), demonstrating 12 indices of hydrogen deficiency. The ¹H and ¹³C NMR data (Supplementary material, Table S3) exhibited characteristic resonances of isoflavone skeleton, like 4',6-dihydroxy-7,8-dimethoxyisoflavone (Wang et al. 2015). The main differences were that a set of glucose residue group was connected to C-6 in 3 instead of hydroxyl, which was supported by the HMBC correlations (Supplementary material, Figure S22) from H-5 to C-4/C-6/C-7/C-8/ C-9 and H-1" to C-6 as well as NOESY correlation (Supplementary material, Figure S23) of H-1" with H-5. Besides, the O-methyl group connected to C-7 and hydroxy attached to C-4' in 4',6-dihydroxy-7,8-dimethoxyisoflavone was replaced by hydroxy and Omethyl group in 3, respectively. This deduction was verified by the HMBC correlations from H-5 to C-7 and $H-2'/H-6'/OCH_3-4'$ to C-4' (Supplementary material, Figure S22). The measurement of optical rotation value of **3** revealed the presence of *D*-glucose. The relative configuration of D-glucose was determined as β -type based on the coupling constant of glucose terminal hydrogen $\delta_{\rm H}$ 5.09 (1H, d, J = 7.8 Hz, H-1"). Thus, the structure of **3** was established as 7-hydroxy-8,4'-dimethoxyisoflavone-6-O- β - Dglucopyranoside.

Compounds **1–12** were evaluated *in vitro* for their inhibitory activities against AChE by a modified Ellman's method. BW284C51 (10 μ M) was used as a positive control, and AChE inhibition rate was ~61.8%. Compound **5** exhibited robust AChE inhibition having an IC₅₀ value at ~15.0 μ M, and compounds **4** and **12** showed mild AChE inhibition having IC₅₀ values at ~50.2 μ M and ~45.7 μ M, respectively. The results were shown in Figure S24 in Supplementary material.

3. Experimental

3.1. Plant material

The pod of *C. siliqua* was collected from Republic of Cyprus. The plant material was identified by one of the authors (Dr. Tina Ting-Xia Dong) according to their morphological characteristics. The voucher specimens (CL2018101) were deposited in Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST SRI, China.

3.2. Extraction and isolation

The dried powder pod of *C siliqua* (20.0 kg) after removal of seeds was refluxed with 95% aqueous EtOH (140 L \times 2, each for 1.5 h) and 70% aqueous EtOH (140 L, each for

1.5 h), successively. After filtration, the solution was evaporated under reduced pressure to give a residue (12.4 kg) that was then separated by macroporous adsorption resin D101 CC, eluting successively with pure water and 95% aqueous EtOH to obtain the EtOH fraction (462.7 g). The EtOH fraction (460.0 g) was then dissolved in 50% aqueous MeOH and partitioned with petroleum ether and EtOAc. The dried EtOAc extract (135.0 g) was subjected to silica gel CC eluted successively with a gradient of petroleum ether-EtOAc (1:1 to 0:1, v/v) and then CH_2CI_2 -MeOH (7:1 to 1:1, v/v) to yield ten fractions (A–J). Fraction F (18.1 g) was subjected to ODS CC eluted with a gradient of aqueous MeOH from 15% to 100% to afford five sub-fractions (F1-F5). Subfraction F4 (4.2 g) was isolated by Sephadex LH-20 column with mobile phase of CH₂Cl₂-MeOH (1:1, v/v), followed by semi-preparative HPLC with mobile phase of isocratic 36% aqueous MeOH to obtain **01** (23.8 mg, t_R 37.14 min). Fraction I (20.0 g) was subjected to ODS CC using a stepwise gradient of aqueous MeOH from 15% to 100% to give five sub-fractions (I1-I5). Sub-fraction I5 (2.7 g) was subjected to Sephadex LH-20 column with mobile phase of CH_2CI_2 -MeOH (1:1, v/v) to give three sub-fractions (I5a–I5c). Compounds **02** (48.3 mg, t_R 27.27 min) and **03** (3.3 mg, t_R 56.42 min) were purified from sub-fractions I5b and I5c by semi-preparative HPLC eluting with isocratic 55% and 49% aqueous MeOH, respectively.

3.2.1. 1'-O-Galloyl-6'-O-feruloyl- α -D-glucopyranose

Yellow powder; UV (MeOH) λ max(log ε) 218.0 (4.26), 291.0(4.02), 322.4 (3.95) nm; IR (KBr) ν_{max} 3378, 1700, 1630, 1604, 1516, 1451, 1351, 1215, 1126, 1071, 1032, 766, 580 cm⁻¹; ¹H and ¹³C NMR spectroscopic data, see Table S1; Negative HRESIMS: *m/z* 507.1180 [M - H]⁻; the original spectra were shown in Figure S1–S8 in Supplementary material.

3.2.2. 9-Isobutyryl syringing

Yellow powder; UV (MeOH) λ max(log ε) 211.6 (4.32), 269.2 (3.97) nm; IR (KBr) ν_{max} 3393, 2934, 1731, 1587, 1507, 1465, 1421, 1336, 1243, 1129, 1070, 610 cm⁻¹; ¹H and ¹³C NMR spectroscopic data, see Table S2; Positive HRESIMS: *m/z* 465.1983 [M + Na]⁺; the original spectra were shown in Figure S9–S15 in Supplementary material.

3.2.3. 7-Hydroxy-8,4'-dimethoxyisoflavone-6-O-β-D-glucopyranoside

Yellow powder; UV (MeOH) λ max(log ε) 204.6 (4.07), 264.2 (4.02) nm; IR (KBr) ν_{max} 3422, 1651, 1614, 1588, 1495, 1367, 1280, 1265, 1183, 1056, 1030, 1012, 831 cm⁻¹; ¹H and ¹³C NMR spectroscopic data, see Table S3; Positive HRESIMS: *m/z* 499.1266 [M + Na]⁺; the original spectra were shown in Figure S16–S23 in Supplementary material.

3.3. AChE inhibition assay

The AChE inhibitory activity of the compounds was determined by the slightly modified Ellman's method (Ellman et al. 1961). In brief, $20 \,\mu\text{L}$ of test chemical were added to the reaction mixture with $20 \,\mu\text{L}$ of $0.05 \,\text{U/mL}$ AChE solution (from rat brain lysate) and $20 \,\mu\text{L}$ of $0.6 \,\text{mM}$ 5,50-dithiobis-2-nitrobenzoic acid (DTNB) in 96-well microplates,

pH 7.4. The reaction was initiated by adding 20 μ L of 1.2 mM ATCh and then quenched with addition of 20 μ L of 4% sodium dodecyl sulfate (SDS) after incubation at 37 °C for 30 min. Absorbance at 405 nm was recorded. BW284C51 was used as positive control. The inhibition rate (%) was calculated as following equation: Inhibition rate (%) = [1 - (OD_S - OD_E)/OD_C] × 100. (The OD_S and OD_C are, respectively, the optical density with and without the test compounds, and OD_E is the optical density without AChE). Inhibition potency of the test compounds was expressed as IC₅₀ value, in which all assays were repeated in triplicate.

4. Conclusion

In this study, two new phenylpropanoids (1 and 2) and one new isoflavone glycoside (3), along with nine known compounds (4 – 12), were isolated from the pod of *Ceratonia siliqua* L. Among all these compounds, Compounds 4, 5, and 12 showed different levels of inhibitory activity against AChE with IC50 values of ~50.2, ~15.0 and ~45.7 μ M, respectively.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Special project of Foshan University of science and technology in 2019 (FSUST19-SRI10) and Shenzhen Science and Technology Innovation Committee (ZDSYS201707281432317; JCYJ20170413173747440; JCYJ20180306174903174).

ORCID

Huai-You Wang (D) http://orcid.org/0000-0003-1407-9912

References

- Agrawal A, Mohan M, Kasture S, Foddis C, Frau MA, Loi MC, Maxia A. 2011. Antidepressant activity of *Ceratonia siliqua* L. fruit extract, a source of polyphenols. Nat Prod Res. 25(4):450–456.
- Aliotta G, Molinaro A, Monaco P, Pinto G, Previtera L. 1992. Three biologically active phenylpropanoid glucosides from *Myriophyllum verticillatum*. Phytochemistry. 31(1):109–111.
- Ango PY, Kapche DWFG, Kuete V, Ngadjui BT, Bezabih M, Abegaz BM. 2012. Chemical constituents of *Trilepisium madagascariense* (Moraceae) and their antimicrobial activity. Phytochem Lett. 5(3):524–528.
- Custodio L, Escapa AL, Fernandes E, Fajardo A, Aligue R, Albericio F, Neng N, Nogueira JMF, Romano A. 2011. Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (*Ceratonia siliqua* L.) germ flour extracts. Plant Foods Hum Nutr. 66(1):78–84.
- Custódio L, Patarra J, Alberício F, Neng NR, Nogueira JMF, Romano A. 2015. *In vitro* antioxidant and inhibitory activity of water decoctions of carob tree (*Ceratonia siliqua* L.) on cholinesterases, α -amylase and α -glucosidase. Nat Prod Res. 29(22):2155–2159.
- Ellman GL, Courtney KD, Andres V, Feather-Stone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 7:88–95.

- Feng WS, Su FY, Zhang XK, Li YJ. 2011. Study on chemical constituents of *Aquilegia yabeana* Kitag. Chin Pharm J. 46(7):496–499.
- Kiem PV, Minh CV, Dat NT, Cai XF, Lee JJ, Kim YH. 2003. Two new phenylpropanoid glycosides from the stem bark of *Acanthopanax trifoliatus*. Arch Pharm Res. 26(12):1014–1017.
- Kim JS, Kwon YS, Sa YJ, Kim MJ. 2011. Isolation and identification of sea buckthorn (*Hippophae rhamnoides*) phenolics with antioxidant activity and α-glucosidase inhibitory effect. J Agric Food Chem. 59(1):138–144.
- Liu Q, Li J, Chai XY, Jiang Y, Tu PF. 2013. Chemical constituents from Qianliang tea. J Chin Pharm Sci. 22(5):427–430.
- Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B. 2003. Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol. 41(12):1727–1738.
- Park CH, Kim KH, Lee IK, Lee SY, Choi SU, Lee JH, Lee KR. 2011. Phenolic constituents of *Acorus gramineus*. Arch Pharm Res. 34(8):1289–1296.
- Park HB, Lee KH, Kim HK, Lee IK, Noh HJ, Choi SU, Lee KR. 2009. Lignans from the roots of *Berberis amurensis*. Nat Prod Sci. 15(1):17–21.
- Rtibi K, Selmi S, Grami D, Amri M, Eto B, El-benna J, Sebai H, Marzouki L. 2017. Chemical constituents and pharmacological actions of carob pods and leaves (*Ceratonia siliqua* L.) on the gastrointestinal tract: a review. Biomed Pharmacother. 93:522–528.
- Rustaiyan A, Saberi M, Habibi Z, Jakupovic J. 1991. Melampolides and other constituents from *Furinea leptoloba*. Phytochemistry. 30(6):1929–1932.
- Stavrou IJ, Christou A, Kapnissi-Christodoulou CP. 2018. Polyphenols in carobs: a review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 269: 355–374.
- Wang Y, Liu CB, Shen QP, Zhang FM, He P, Liu ZH, Zhang HB, Yang XD, Miao MM, Yang GY. 2015. Flavonoids from the leaves of sun cured tobacco and their anti-tobacco mosaic virus activity. Heterocycles. 91(6):1198–1203.
- Yang XW, Ma YL, He HP, Wang YH, Di YT, Zhou H, Li L, Hao XJ. 2006. Iridoid constituents of *Tarenna attenuata*. J Nat Prod. 69(6):971–974.