Abstract

This paper presents the Completeness Invariant, a lightweight cryptographic primitive for de-
tecting omission attacks on digital evidence sets. We address the open problem of verifying that
no items have been selectively removed from an unordered evidence collection—a vulnerability
that existing tamper-evident mechanisms (hash chains, Merkle trees, digital signatures, C2PA
manifests) leave unaddressed.

Our construction applies XOR, aggregation of SHA-256 hashes—building on the incremen-
tal hashing paradigm of Bellare and Micciancio (1997) and the multiset hash constructions of
Clarke et al. (2003)—to achieve O(1) per-event update and O(1) verification with a 32-byte
constant-size commitment, independent of set size. We formalize the notion of omission resis-
tance through the OmitForge security game and prove (¢, n,e)-omission resistance under the
random oracle model with ¢ < n - 272! 4 Adv§F(t). We analyze known vulnerabilities—
XHASH attacks, Wagner’s generalized birthday problem (2002), and self-inverse cancellation—
and specify concrete countermeasures including bounded set sizes, unique nonce enforcement,
and hardware-backed computation via Apple Secure Enclave and Android StrongBox.

We implement the Completeness Invariant within the Capture Provenance Profile (CPP
v1.5) specification, deployed in VeraSnap, a consumer iOS application. Experimental evaluation
on 10,000 evidence sessions demonstrates 0.003ms per-event XOR aggregation overhead, 100%
omission detection rate, and 56-byte total verification state. Integration with RFC 3161 trusted
timestamping, RFC 6962 Merkle trees, and biometric human-presence binding provides defense-
in-depth across four independent security layers.

While related standards such as RFC 4998 (Evidence Record Syntax) address hash-tree-
based evidence preservation for ordered archives, and alternative multiset hash constructions
(MuHash, LtHash) offer stronger algebraic guarantees without set-size bounds, our contribu-
tion lies in the specific combination of formal omission-resistance definitions, bounded XOR
construction with explicit countermeasures, and validated deployment on consumer hardware—
an application domain not addressed by existing specifications or implementations.

Keywords: Digital forensics, Omission attacks, Completeness invariants, XOR hash aggrega-
tion, Tamper-evident logging, Content provenance, RFC 3161
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1 Introduction

The integrity of digital evidence is a foundational concern in forensic science, regulatory com-
pliance, and legal proceedings. This paper addresses a critical yet underexplored vulnerability:
omission attacks, in which adversaries selectively delete unfavorable evidence while retaining
favorable items, leaving no cryptographic trace of deletion.

1.1 Motivation: The Omission Attack Problem

Consider an insurance adjuster who captures 20 photographs at a damage site but deletes
5 images that contradict a fraud claim before submission. Each remaining image retains its
valid hash, valid signature, and valid timestamp. No per-file integrity mechanism detects the
deletion. The evidence set appears complete and authentic, yet 25% of the ground truth has
been suppressed.

This vulnerability is not merely theoretical. Breitinger et al. [1] identify as an open research
gap the problem of “determining if the absence of data is due to configuration, tampering,
or simply the passing of time.” Wagner et al. [2] demonstrate that attackers with elevated
privileges can disable audit logs entirely. The formal cryptographic literature acknowledges the
absence of rigorous definitions: Ma and Tsudik [3] define truncation attacks as deletion of “a
contiguous subset of tail-end log entries” but do not formalize general selective deletion.

1.2 Limitations of Existing Approaches
Current tamper-evident mechanisms address related but distinct threat models:

1. Hash chains provide append-only guarantees but are inherently sequential. For unordered
evidence sets—photographs at a scene, sensor readings in a time window—nhash chains impose
an artificial ordering.

2. Merkle trees (RFC 6962 [4]) provide efficient batch integrity verification with O(logn)
inclusion proofs. However, Merkle proofs verify that a specific item belongs to a committed
set—they do not independently verify that the entire set is present.

3. Digital signatures bind content to a signer identity but provide no set-level guarantees.
Deletion of a signed item leaves no trace on the remaining signatures.

4. C2PA [6] (Coalition for Content Provenance and Authenticity), the dominant content prove-
nance standard with over 6,000 member organizations, provides strong provenance chains for
individual files but has no mechanism to detect omission from a collection. Liu et al. [7] fur-
ther demonstrate that C2PA is vulnerable to recapture attacks.



5. RFC 4998 (Evidence Record Syntax) [25] defines hash-tree-based evidence records for long-
term preservation of signed data. While ERS provides archive timestamp renewal and hash-
tree grouping, it targets ordered archival of individually signed documents—not detection
of selective omission from unordered capture sessions where the set boundary itself must be
committed.

1.3 Our Contributions

We make the following contributions:

1. Formal definition of omission resistance (Section 3): We define the OmitForge secu-
rity game and the notion of (¢, q,<)-omission resistance, filling a gap in the cryptographic
literature.

2. Completeness Invariant construction (Section 4): A concrete construction applying
XOR aggregation—building on the incremental hashing paradigm of Bellare-Micciancio [8]—
with O(1) computation per event and O(1) verification state, adapted with bounded set sizes
and domain separation for evidence capture.

3. Security analysis with explicit limitations (Section 5): Analysis of XHASH attacks,
Wagner’s generalized birthday problem [9], self-inverse cancellation, random oracle model
assumptions, hardware trust boundaries, and post-quantum considerations, with concrete
countermeasures and honest characterization of residual risks.

4. Comparison with alternative multiset hashes (Section 2.5): Explicit trade-off analysis
against MuHash (DL-based) and LtHash (SIS-based), justifying XOR selection for resource-
constrained mobile deployment while acknowledging the stronger algebraic guarantees of
alternatives.

5. Implementation and evaluation (Section 6): Deployment within CPP v1.5 [10] as im-
plemented in VeraSnap, with measurements on 10,000 evidence sessions and discussion of
evaluation scope limitations.

6. Multi-layer integration (Section 7): Composition with Merkle trees, RFC 3161 times-
tamping [11], and biometric binding for defense-in-depth.

2 Related Work

2.1 Incremental and Multiset Hashing

The theoretical foundations of order-independent hash aggregation were established by Bel-
lare and Micciancio [8], who introduced the “randomize-then-combine” paradigm and analyzed
XOR-based (XHASH), addition-based (AdHash), and multiplication-based (MuHash) variants.
They proved that XHASH is insecure for unbounded sets due to GF(2) linear algebra attacks,
while MuHash security reduces to the discrete logarithm problem.

Clarke, Devadas, van Dijk, Gassend, and Suh [12] extended this work at ASTACRYPT 2003
with four multiset hash constructions: MSet-XOR-Hash, MSet-Add-Hash, MSet-Mu-Hash, and
MSet-VAdd-Hash, applied to memory integrity checking. Their MSet-XOR-Hash requires se-
cret keys to achieve security—a requirement we relax by bounding the set size and enforcing
uniqueness constraints (Section 5.2).

Zhang, Sun, Zhang, and Gu [13] (ASTACRYPT 2023) introduce Permem, providing the first
formal security definitions for memory consistency checks in the Polynomial IOP model. Setty,
Thaler, and Wahby [14] (EUROCRYPT 2024) achieve sublinear prover costs using multiset
fingerprinting in the Lasso lookup argument. Lewi, Kim, Maykov, and Weis [15] formalize



LtHash collision resistance via SIS reduction, deploying 1thash16 at Meta with approximately
200-bit collision resistance.

These advances demonstrate continued theoretical relevance of multiset hash primitives,
though their application remains confined to memory verification and zero-knowledge virtual
machines—not evidence set completeness.

2.2 Tamper-Evident Logging

Schneier and Kelsey [37] introduced forward-secure audit logs, where a key evolution mechanism
ensures that even if the current logging key is compromised, previously committed entries remain
tamper-evident. Their construction is foundational but assumes strictly ordered, append-only
log entries. Crosby and Wallach [5] (USENIX Security 2009) introduced tree-based structures
with logarithmic proof sizes. Pullsiphol et al. [38] proposed Balloon, a transparent data structure
that provides a Merkle-tree history with bounded-space append-only proofs and gossip-based
consistency verification—a design that influenced Certificate Transparency’s evolution. Zhao,
Shoaib, Hoang, and Hassan [16] (ACM CCS 2025) present Nitro, achieving 10-25x performance
improvements via eBPF with fine-grained tamper detection. Ahmad, Lee, and Peinado [17]
(IEEE S&P 2022) introduce HARDLOG with 6.3% overhead and 15ms bounded-asynchronous
protection. Paccagnella et al. [18] (NDSS 2020) present CUSTOS via TEE-based decentralized
auditing.

These systems provide strong guarantees against sequential truncation but fundamentally
assume ordered log streams. Evidence capture scenarios—where multiple items are generated
within a session without inherent ordering—fall outside their threat model. Certificate Trans-
parency (CT, RFC 6962) [4] represents the most successful deployment of Merkle-tree-based
completeness: monitors detect split views via gossip, and auditors verify inclusion proofs against
signed tree heads. However, CT requires online monitors, gossip protocols, and O(nlogn) stor-
age for full audit—overhead that is impractical for end-user verification on mobile devices. The
XOR-CI approach trades CT’s rich inclusion proofs for constant-size, offline-verifiable complete-
ness, accepting the limitation of full-set verification (Section 5.7).

2.3 Content Provenance Standards

The C2PA specification v2.3 [6] represents the industry standard for content provenance. Liu et
al. [7] (accepted, USENIX Security 2025) demonstrate recapture attacks on all hardware-based
provenance cameras. Zhao, Zhang et al. [19] (NeurIPS 2024) prove that invisible watermarks
can be provably removed using generative Al, undermining C2PA’s soft binding. The World
Privacy Forum [20] concludes that C2PA “does not deter bad actors.”

The Capture Provenance Profile (CPP) [10], published as IETF Internet-Draft draft-vso-cpp-core-00,
addresses these limitations through session-based completeness models.

2.4 FEvidence Preservation Standards

RFC 4998 (Evidence Record Syntax, ERS) [25] defines a format for long-term preservation of
evidence records using hash trees with archive timestamps. ERS enables renewal of archive
timestamps when hash algorithms weaken, providing long-term integrity for individually signed
documents. However, ERS fundamentally addresses a different problem: preserving and renew-
ing proofs of existence for individual records within an ordered archive. It does not define set-
level completeness commitments, does not address the omission attack model (Definition 3.2),
and assumes a trusted archival service that controls record ingestion.

NIST SP 800-131A [24] specifies cryptographic algorithm transitions and key lengths but
does not address aggregation-based set verification. The gap we identify is therefore more pre-
cisely characterized as: no existing standard specifies set completeness verification for unordered



collections via lightweight aggregation, though related hash-tree mechanisms for ordered archives
exist.
2.5 Comparison with Alternative Multiset Hashes

Our construction uses XOR aggregation rather than algebraically stronger alternatives. We
acknowledge this as a deliberate engineering trade-off, not a claim of cryptographic superiority.
Table 1 compares the relevant properties.

Table 1: Multiset hash primitive comparison

Primitive Security Update State Size Bound Deployment

XOR-CI ROM (bounded)  O(1) XOR  32B n <220 This work
MuHash DL-based O(1) mod exp 256 B None None (evidence)
LtHash SIS-based O(1) mod add 2KB None Meta (2023)
MSet-XOR Keyed PRF O(1) XOR 32B None Clarke (2003)

MuHash [8] achieves security under the discrete logarithm assumption without set-size
bounds, but requires modular exponentiation per update (~100x slower than XOR on mobile
hardware). LtHash [15] achieves approximately 200-bit collision resistance via SIS reduction
without bounds, but requires 2 KB state and modular arithmetic. Both are viable alternatives
with stronger theoretical guarantees.

Our selection of XOR is motivated by three deployment constraints specific to mobile evi-
dence capture: (1) Secure Enclave operations are limited to specific cryptographic primitives—
modular group operations are not natively supported; (2) the 32-byte state fits within Secure
Enclave sealed storage without external memory access; (3) the bounded set-size assumption
(n < 229) is realistic for evidence capture sessions (typical: 1-500 items).

We emphasize that for deployments where set sizes may be unbounded or where the random
oracle model is unacceptable, MuHash or LtHash should be preferred. The Completeness In-
variant construction is designed to be primitive-agnostic: replacing the XOR aggregation with
modular addition (AdHash) or multiplication (MuHash) requires changing only the Update
function, preserving the formal framework of Definitions 1-4.

2.6 Research Gap

Table 2 summarizes capabilities of existing approaches against our target threat model.

Table 2: Capability comparison of integrity mechanisms

Mechanism Modif. Trunc. Sel. Omission Unord. Sets O(1) Verify
Hash chains v v X X X
Merkle trees v v X v X
Digital signatures v X X v v
C2PA manifests v X X X v
RFC 4998 (ERS) v v x T X X
Tamper-evident logs v v X X X
Completeness Inv. v v v v v

*Requires external root commitment. "ERS groups records into hash trees but does not commit to set

boundaries; omission of ungrouped records is undetectable.

The contribution is not that XOR-based hashing is novel—it is not, as Bellare-Micciancio
(1997) and Clarke et al. (2003) establish the paradigm—but that: (a) formal omission-resistance



definitions for unordered evidence sets have not been previously published; (b) the specific
combination of bounded XOR, domain separation, and hardware-backed computation addresses
practical constraints not considered in the theoretical literature; and (c) validated deployment on
consumer mobile hardware demonstrates feasibility in a domain where no prior implementation
exists.

3 Threat Model and Security Definitions

3.1 System Model

We consider a system with three entities:
e Collector C: Captures evidence items eq,es, ..., e, within a session S.
e Store St: Persists the evidence set E = {ey,...,e,} with metadata.
e Verifier V: Checks completeness of a presented set ' C E.
The session lifecycle:
1. C initializes session S and commits session identifier sid.

2. For each capture event, C generates evidence item e; and updates running completeness
state.

3. C finalizes session S, producing completeness commitment o.
4. o is anchored to an external TSA via RFC 3161.

5. At verification, V receives £’ and o, checking whether £/ = E.

3.2 Adversary Model

We consider an adversary A who:
1. Controls the Store: A can read, delete, and reorder items after session finalization.

2. Cannot break cryptographic primitives: A cannot find SHA-256 collisions or forge
RFC 3161 timestamps.

3. Cannot compromise hardware security: The Secure Enclave (i0S) or StrongBox
(Android) is trusted. We discuss the implications of relaxing this assumption in Sec-
tion 5.6.

The adversary’s goal: present a strict subset E' C E such that verification accepts E’ as the
complete set.

3.3 Formal Definitions

Definition 3.1 (Set Completeness Scheme). A set completeness scheme IT = (Init, Update, Finalize, Verify)
consists of:

e Init(1") — sty: Initialize state for security parameter .
e Update(st;_1,e;) — st;: Update state with evidence item e;.

e Finalize(st,) — o: Output completeness commitment.



e Verify(E’, o) — {accept, reject}: Verify set £’ against commitment o.
Correctness. For all n € N and all sequences (eq, ..., ey):
Pr[Verify({e1,...,e,}, Finalize(Update(- - - Update(Init(1*),e1) - ,e,))) = accept] = 1

Definition 3.2 (Omission Resistance). Scheme II is (¢, ¢, €)-omission resistant if for all adver-
saries A running in time ¢ making g queries to Update:

Pr[OmitForgej(A) = 1] < g(\)
where the OmitForge game proceeds as:
1. stg « Init(1*)
2. (E,0) + AUpdate(st:)(st0) (A adaptively adds items)
3. E' + A(E,0) (A outputs a subset)
4. Return (E' C E) A Verify(E’, o) = accept

Definition 3.3 (Insertion Resistance). Scheme II is (¢,q,e)-insertion resistant if A cannot
produce E’ D F such that Verify(FE’, o) = accept, except with probability .

Definition 3.4 (Substitution Resistance). Scheme II is (¢, g, €)-substitution resistant if A can-
not produce E' with E' # E and |E’| = |E| such that Verify(E’,0) = accept, except with
probability e.

Remark 3.1 (Relationship to Prior Definitions). Our omission resistance definition extends
Ma and Tsudik’s [3] append-only property from sequential streams to unordered sets, and is
strictly stronger than Crosby and Wallach’s [5] consistency proofs.

4 The Completeness Invariant

4.1 Construction
Let H :{0,1}* — {0,1}* be a cryptographic hash function (SHA-256, A = 256).
Protocol XOR-CI (XOR-based Completeness Invariant):

1: function INIT(1%)

2 Iy < 0* > A-bit zero vector
3: ent <0

4 return sty = (Iy, cnt)

5: end function

6: function UPDATE(st;—1 = ([;—1, cnt), €;)

7: hi < H(sid || e¢nt || Canonicalize(e;)) > Domain-separated hash
8: L+~ I, 19h; > XOR aggregation
9: ent +—cent +1

10: return st; = (I;, ent)

11: end function

12: function FINALIZE(st,, = (I, cnt))
13: o <+ (In, ent, sid)

14: return o

15: end function

16: function VERIFY(E' = {¢€},... el }, o = (I,n,sid))



17: if m # n then return reject > Cardinality check
18: end if

19: I'+ 0

20: for j =1tom do

21: R < H(sid || idx(e}) || Canonicalize(e}))
22: I' < TI'®h;

23: end for

24: if I’ = I then return accept

25: else return reject

26: end if

27: end function

where sid is a cryptographically random 128-bit session identifier, Canonicalize applies RFC 8785

JSON Canonicalization Scheme [22], and idx(e}) recovers the original sequence index.

Remark 4.1 (Primitive Agnosticism). The formal framework (Definitions 1-4) is independent
of the aggregation primitive. Replacing XOR with modular addition (AdHash) or multiplication
(MuHash) in the Update function preserves the security definitions while changing the concrete
security bounds and performance characteristics. Section 2.5 compares these trade-offs. The
construction is also independent of the CPP/VAP application framework: any system requiring
set completeness verification can instantiate the protocol using only a hash function and the
four operations defined in Definition 1.

Remark 4.2 (Session Scope and Counter Management). Several implementation invariants
warrant explicit statement: (a) Single-device scope: Each session is bound to a single device’s
Secure Enclave via sid. Cross-device synchronization (e.g., iCloud) is explicitly out of scope;
sessions cannot span multiple devices, and counter consistency is guaranteed by the local TEE.
(b) Session ID collision: The 128-bit sid is generated via SecRandomCopyBytes (i0S) or
SecureRandom (Android). The birthday-bound collision probability for 240 total sessions is
240. 939 /9128 ~ 249 which is negligible. (c) Counter overflow: With n < Np.x = 220 and a
64-bit counter, overflow is impossible within a session (22 < 2%4). (d) Bound enforcement:
The Npax check MUST be enforced within the Secure Enclave, not in application-layer code.
The Update function rejects calls when cnt > Npax, returning an error that triggers session
finalization. If enforcement occurs only in application code, a compromised app could bypass
the bound, re-enabling the XHASH attack.

4.2 Properties
1. Order Independence. XOR is commutative and associative: for any permutation ,
H(e1) ® H(eg) ® - @ H(en) = H(eq(1)) © H(er)) ® -+ @ H(er(n))
This allows verification without knowledge of the original capture order.

2. Incremental Computation. Each Update requires one hash computation and one XOR,
both O(1). The running state I; is exactly A bits regardless of items processed.

3. Constant-Size Commitment. The commitment o consists of the A-bit invariant I (32 bytes
for SHA-256), item count n (8 bytes), and session identifier sid (16 bytes)—56 bytes inde-
pendent of set size.

4. Privacy Preservation. Under the random oracle model, I is computationally indistin-
guishable from a random A-bit string given any strict subset of the hash values.



Remark 4.3 (Collision-Resistance Assumption). The security guarantees of this construction
rely explicitly on the collision resistance of H. If two distinct evidence items e; # e; produce
H(sid||j|lej) = H(sid| k| er), an adversary could substitute one for the other without changing
I. For SHA-256, the birthday bound gives collision probability ~ n? - 2725 which is ~ 27216
for n = 220—cryptographically negligible. Additionally, the self-inverse property (a ® a = 0)
means that if two items produce identical hash values, deleting both leaves I unchanged. The
domain-separated counter (sid || cnt || data) ensures that even identical content at different
sequence positions produces distinct hashes, preventing accidental cancellation. This defense
holds provided the counter is enforced within the TEE (Remark 4.2).

4.3 The CPP Completeness Equation

Within the Verifiable AI Provenance (VAP) Framework [23], the Completeness Invariant en-
forces:
> " GEN_ATTEMPT = » GEN + ) GENDENY + ) ~ GEN_ERROR

Each generation attempt must resolve to exactly one outcome. The XOR invariant is com-
puted over all events regardless of category, providing defense against both within-category
omission and cross-category manipulation.

Note that in Al provenance contexts, the integrity of hash inputs depends on the binding
between generative model outputs and the evidence items. As Zhao et al. [19] demonstrate,
generative models can remove watermarks; applications using the Completeness Invariant for Al
content logs must ensure that evidence items are bound to model outputs through mechanisms
beyond soft watermarking.

5 Security Analysis

5.1 Omission Resistance Proof

Theorem 5.1 (Omission Resistance). Under the random oracle model, XOR-CI is (t,n,¢€)-
omission resistant with:
e <n- 272 4 AdvFE(t)

where n is the mazimum set size and AdV%R(t) 15 the collision resistance advantage against H .
Proof. Suppose adversary A wins the OmitForge game: A presents E' C F with |E'| = |E| =n

(the cardinality check excludes |E’| < |E|). Then A must find E' = (E \ {e;}) U {e*} for some
ej € E and e* ¢ E such that:

P H(e) =P H(ei) & H(e")
d 7]

This simplifies to H(e;) = H(e*), which is a collision in H. Under the random oracle model
with output length A = 256, Adv§F(t) < t2- 272,

If A presents E' with |E’| < n, the cardinality check rejects immediately. If A presents E’
with |E’| = n containing one duplicate, unique nonce enforcement (Section 5.2) ensures distinct
hash inputs, reducing to the collision case.

The term n - 2721 accounts for accidental XOR collisions across n items. O

Corollary 5.2. For SHA-256 (A = 256) and n < 220 (=~ 1 million items):
£ < 920 9255 | 42 9=256 o, 9235

This exceeds the 128-bit security level required by NIST SP 800-131A [24].



Remark 5.1 (Scalability of Security Bounds). The n - 272! term means security degrades
linearly with set size. For n = 2%0, ¢ ~ 2723 provides ample margin. However, for hypothetical
deployments with n > 2% (e.g., large-scale IoT), e ~ 27195 which remains above NIST thresh-
olds but narrows the margin. Deployments requiring unbounded set sizes should use MuHash
or LtHash (Section 2.5), which do not exhibit this linear degradation.

5.2 On the Random Oracle Model

Our security proof relies on the random oracle model (ROM), where H is modeled as a truly
random function. This is standard practice in applied cryptography but warrants explicit dis-
cussion.

Canetti, Goldreich, and Halevi [32] demonstrated that there exist schemes provably secure
in the ROM that become insecure when instantiated with any concrete hash function. This
foundational result means our proof provides evidence of security but not an unconditional
guarantee. In practice, SHA-256 is widely treated as a ROM-adequate instantiation, and no
concrete attacks distinguishing SHA-256 from a random oracle are known.

For deployments requiring standard-model security, the Completeness Invariant framework
can be instantiated with MuHash (whose security reduces to the discrete logarithm problem
in the standard model) or LtHash (whose security reduces to the Short Integer Solution prob-
lem). These alternatives sacrifice the efficiency advantages of XOR, but avoid ROM dependence
entirely.

5.3 Countermeasures for Known Vulnerabilities
5.3.1 XHASH Attack (Bellare-Micciancio, 1997)

Bellare and Micciancio [8] proved that for unbounded sets, an adversary can find XOR collisions
using Gaussian elimination over GF(2): given A 4+ 1 linearly independent hash values, the
adversary can express any target value as an XOR combination in O(A3) time.

Why domain separation mitigates but does not eliminate the attack. The XHASH
attack fundamentally requires the adversary to query the hash function on chosen inputs and
collect X\ 4+ 1 outputs to build a linear system. In our construction, hash inputs have the form
H (sid|| ent|| data) where sid is a per-session random nonce and ¢nt is a Secure Enclave—enforced
monotonic counter. The adversary cannot choose arbitrary inputs to H: they must either
(a) trigger legitimate capture events (which increments cnt within the TEE) or (b) compromise
the Secure Enclave to forge hash inputs. Under option (a), the adversary is bounded by n <
Nmax; under option (b), the TEE trust assumption is violated (see Section 5.6).

We emphasize that domain separation does not change the algebraic vulnerability of XOR
over GF(2)—the hash outputs are still elements of {0, 1}* subject to linear dependence. What
it changes is the adversary’s ability to exploit that vulnerability: the attack requires A +1 =
257 adversary-chosen hash evaluations, but the construction limits the adversary to at most
Niax = 220 evaluations on inputs they cannot fully control. For n < 220 « 257... we note
that the relevant comparison is not n vs. A + 1 (since even 220 random vectors in {0, 1}%56 are
overwhelmingly likely to be linearly independent) but rather the probability that the adversary
can find a useful linear combination within the constrained set, which reduces to the collision
bound in Theorem 5.1.

Bound enforcement. As noted in Remark 4.2, the Ny bound MUST be enforced within
the Secure Enclave. Application-layer enforcement is insufficient: a compromised app could
call Update beyond Npax, potentially accumulating enough hash values for GF(2) elimination.
The VeraSnap implementation enforces this via a TEE-internal counter check that returns
errSecParam when cnt > Nyax.
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5.3.2 Self-Inverse Property

XOR is its own inverse: a ® a = 0. If an adversary inserts a duplicate item, it cancels with the
original, effectively removing both.

Countermeasure: Each evidence item includes a monotonically increasing sequence counter
cnt in its hash input: H(sid || ent || data). Even identical content produces distinct hashes. The
counter is maintained within the Secure Enclave, preventing manipulation.

5.3.3 Wagner’s Generalized Birthday Problem (2002)

Wagner [9] demonstrated that k-XOR problems can be solved in (2" (1+llogzk])),

Security level analysis. For SHA-256 (A = 256) and k = 4, Wagner’s algorithm requires
0(2%6/3) ~ O(2%) operations. We acknowledge that 2% falls below the 128-bit security level
required by NIST SP 800-131A [24] for general-purpose cryptographic applications. This repre-
sents a genuine gap between the omission resistance bound (e ~ 27235 from Theorem 5.1) and
the Wagner attack complexity.

Why the gap is acceptable in our threat model. The Wagner attack requires the ad-
versary to freely choose which values to combine—specifically, to evaluate H on 2% adversary-
selected inputs and sort/merge the results. In the XOR-CI construction, hash inputs are con-
strained by the Secure Enclave: sid is fixed per session, cnt is monotonic, and the adversary’s
influence is limited to the data component of at most Nyax = 229 items. The adversary cannot
evaluate H on 2% inputs within a bounded session.

For deployments requiring >128-bit Wagner resistance, we recommend SHA-384
(X = 384), which yields O(2384/3) = O(2!%8) for k = 4. The Completeness Invariant is crypto-
agile: substituting SHA-384 for SHA-256 requires no protocol changes, only a configuration
update to the hash function identifier. SHA-512 provides O(2'7’) Wagner resistance for even
greater margin.

Cross-session considerations. If an adversary can correlate hash values across multiple
sessions (e.g., sessions sharing common evidence items), the effective & may increase. Each
session uses an independent sid, ensuring that H(sid; || ent || data) # H(sids || ent || data) with
overwhelming probability. Cross-session Wagner attacks therefore require independent collision
search per session, not a combined search.

5.4 Post-Quantum Considerations

Grover’s algorithm [33] reduces hash preimage search from O(2}) to O(2*/?). The BHT algo-
rithm [34] reduces collision finding from O(2V/2) to O(2*/3).
For the XOR-CI construction with SHA-256:

e Collision resistance: Quantum ~ 2% bits (via BHT), matching Wagner’s classical bound.
The construction does not become weaker under quantum attack than it already is classically.

e Preimage resistance: Quantum 2'2® bits (via Grover), meeting NIST standards.

For long-term deployments (104 year evidence retention), SHA-384 provides ~ 2'?% quantum
collision resistance. The Completeness Invariant is crypto-agile by design: substituting the hash
function requires no protocol changes. We do not claim post-quantum security for the full CPP
stack, as ES256 signatures (ECDSA P-256) are vulnerable to Shor’s algorithm; the companion
VCP paper [31] addresses hybrid post-quantum signatures.

5.5 Composition with External Anchoring

The Completeness Invariant alone establishes set integrity relative to o. Without external
anchoring, an adversary controlling the Store can recompute ¢ for any subset. RFC 3161
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timestamping [11] binds ¢ to a specific point in time:
TSA_token = TSA.sign(H (o || timestamp))

This creates a dual-integrity guarantee:

1. Set completeness (Completeness Invariant): The presented set matches the committed
invariant.

2. Temporal binding (RFC 3161): The commitment existed at the attested time.

TSA trust model and compromise. The VeraSnap implementation uses multiple TSAs
(rfc3161.ai.moda primary; DigiCert and Sectigo fallback) with automatic failover. We acknowl-
edge that failover is mot consensus: the implementation trusts whichever TSA responds first,
creating a single point of trust per timestamp. If a TSA is compromised (its signing key is
extracted or it issues backdated timestamps), the temporal binding for tokens from that TSA
is void.

Mitigations include: (a) TSA certificates are validated against public CA trust chains at ver-
ification time; (b) CPP v1.5 records which TSA issued each token, enabling selective revocation;
(c) for high-assurance deployments, CPP supports a “dual-anchor” mode that obtains times-
tamps from two independent TSAs, requiring both to verify. Full k-of-n threshold anchoring is
identified as future work.

Offline and deferred anchoring. TSA communication requires network connectivity,
which may be unavailable during evidence capture (e.g., disaster sites, remote locations).
CPP v1.5 addresses this through deferred anchoring: the Completeness Invariant is computed
and finalized locally within the Secure Enclave, and the TSA timestamp is obtained when
connectivity is restored. During the gap, the invariant is protected by the TEE (Layer 2) and
biometric binding (Layer 4), but lacks the temporal guarantee of Layer 3. The deferred anchor’s
timestamp reflects when the TSA received the request, not when the session was captured—this
temporal gap is recorded in the CPP proof metadata.

Distinction from C2PA recapture attacks. Liu et al. [7] demonstrate that C2PA
provenance can be defeated by photographing a screen displaying authenticated content. This
attack targets the content origin claim, not temporal binding. RFC 3161 timestamping is
orthogonal: it proves that a commitment existed at a specific time, but does not prove what
was committed is authentic. The TSA cannot be “recaptured”—it is a server-side signing
operation, not a content-level assertion. However, a recapture attack combined with deferred
anchoring could allow fabricated content to receive a legitimate timestamp; CPP’s LiDAR-based
anti-recapture (Layer 4) addresses this vector.

5.6 Hardware Trust Boundary Analysis

Our adversary model (Section 3.2) assumes the trusted execution environment (TEE) is not
compromised. We acknowledge this is a strong assumption that warrants explicit discussion.

Known TEE vulnerabilities. Apple Secure Enclave has been subject to hardware-level re-
search: CVE-2020-9839 demonstrated a memory corruption vulnerability in the Secure Enclave
Processor (SEP), though exploitation required physical access and was patched in iOS 13.6.
More broadly, Lipp et al. demonstrated speculative execution side-channels affecting ARM
TrustZone implementations. Android StrongBox (Keystore backed by a dedicated secure ele-
ment) has had implementation-specific vulnerabilities; notably, certain Samsung and Qualcomm
TEE implementations disclosed key extraction via fault injection (reported 2023-2024).

In 2025, researchers from Georgia Tech, Purdue University, and Synkhronix demonstrated
the TEE.Fail attack [35], extracting cryptographic keys from Intel TDX and AMD SEV-SNP
using sub-$1,000 hardware to exploit deterministic XTS encryption on DDR5 memory buses.
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While TEE.Fail targets server-class confidential computing (not mobile Secure Enclaves), it
demonstrates that TEE trust boundaries continue to narrow as physical side-channel techniques
mature. The Spectre [36] and Plundervolt families of attacks further reinforce that processor-
level side channels are a persistent, evolving threat class.

Impact if TEE is compromised. If the Secure Enclave or StrongBox is compromised, the
adversary can manipulate the monotonic counter and session state, defeating the self-inverse and
XHASH countermeasures entirely. The Completeness Invariant’s security then degrades to the
algebraic XOR security—which, without bounds enforcement, is broken by Bellare-Micciancio.

Mitigation. The multi-layer architecture (Section 7) provides defense-in-depth: even with
TEE compromise, Layer 3 (RFC 3161 TSA) remains independent (the TSA runs on a sepa-
rate server), and Layer 4 (biometric binding) requires presentation-attack-quality deepfakes. A
compromised TEE defeats Layer 1 and Layer 2 but not Layer 3 or Layer 4 independently.

5.7 Composition with Merkle Trees

Table 3: Complementary verification properties

Property Merkle Tree Completeness Inv.
Individual inclusion proof O(logn) Not provided
Set completeness Requires root commit O(1)
Verify without full set Yes (paths) No (full set)
Update complexity O(logn) 0(1)

State size O(n) internal nodes O(1) (A bits)

The full-set verification requirement is a notable limitation: unlike Merkle trees, which sup-
port O(logn) proofs for individual items without transmitting the entire set, the Completeness
Invariant requires the verifier to possess all n items. For distributed verification scenarios or
regulatory audits where only subset access is available, the Completeness Invariant should be
combined with Merkle inclusion proofs as specified in CPP v1.5.

Combined verification procedure. When both mechanisms are deployed, the verification
proceeds in two phases:

1. Set completeness check: Recompute I' = (P, H(sid || idx(e}) || Canonicalize(e})) and
verify I’ = I with |E’'| = n (Completeness Invariant, this paper).

2. Individual inclusion check: For any item e;- of interest, verify its Merkle inclusion
proof against the committed root R (standard Merkle verification).

Both the invariant I and the Merkle root R are included in the TSA-timestamped commitment:
oral = (I, n, sid, R). Phase 1 confirms the entire set is present; Phase 2 confirms specific items
belong to that set. Consistency between the two is guaranteed because both are computed over
the same evidence items during session finalization and anchored in a single TSA token.

A verifier performing only Phase 2 (Merkle proof for a single item) gains inclusion assur-
ance but not completeness assurance. A verifier performing only Phase 1 gains completeness
assurance but cannot verify individual items without the full set. Full assurance requires both
phases.

5.8 Malicious Collector Analysis

If the collector C is adversarial, the Completeness Invariant cannot detect this—it guarantees
consistency between the committed state and the presented set, not between the set and physical
reality.
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Capture-time suppression vs. post-capture omission. A critical distinction must be
made:

e Post-capture omission (addressed): An adversary who controls the Store deletes items
after they have been recorded and committed. The Completeness Invariant detects this with
probability 1 — e (Theorem 5.1).

e Capture-time suppression (not addressed): An adversary who controls the Collector pre-
vents events from being recorded in the first place—e.g., disabling the camera for specific
events, or selectively not calling Update. The Completeness Invariant cannot detect this,
because the suppressed event never enters the committed state.

No cryptographic commitment scheme can detect events that were never committed. This
is a fundamental limitation shared by all integrity mechanisms: Merkle trees, hash chains, and
digital signatures equally cannot detect uncommitted events. The defense against capture-time
suppression must come from outside the commitment protocol:

CPP addresses this through complementary mechanisms: biometric human-presence bind-
ing (Face ID / Touch ID) ensures a specific human was present; LIDAR screen detection (anti-
recapture [7]) prevents photographing screens; continuous session monitoring via accelerom-
eter/gyroscope data detects device manipulation that might indicate selective capture. We
note that these mechanisms are not foolproof against advanced deepfakes, and LiDAR-based
anti-recapture represents an ongoing research area.

Scope clarification. Our adversary model (Section 3.2) explicitly places the adversary at
the Store, not the Collector. This reflects the intended deployment: the photographer is trusted
(their identity is biometrically bound), but the evidence may pass through untrusted interme-
diaries (cloud storage, email, USB transfer) before reaching the verifier. For scenarios requiring
protection against a malicious collector (e.g., body camera footage where the officer may be
compromised), additional external witnessing mechanisms—such as real-time streaming to an
independent observer or TEE-enforced continuous recording—are necessary and are outside the
scope of this paper.

6 Implementation and Evaluation

6.1 System Architecture

We implement XOR-CI within VeraSnap, an iOS application on the Apple App Store (ID:
6757994770).! The implementation uses: SHA-256 via Apple CryptoKit (hardware-accelerated),
Apple Secure Enclave for session keys and invariant state, RFC 8785 JCS [22] for determinis-
tic JSON serialization, RFC 3161 via multiple TSAs with automatic failover (rfc3161.ai.moda
primary; DigiCert and Sectigo fallback), and ES256 (ECDSA P-256) for Secure Enclave com-
patibility.

An Android implementation using Kotlin with StrongBox-backed Android Keystore is under
active development, targeting platform parity with the iOS version.

The XOR invariant computation occurs entirely within the Secure Enclave’s trusted execu-
tion environment.

Reproducibility note. The CPP specification [10] is published as IETF Internet-Draft
draft-vso-cpp-core-00 and is freely available. The XOR-CI algorithm (Section 4.1) is fully
specified and implementable from the protocol description. The VeraSnap application source
code is proprietary; we acknowledge this limits independent reproducibility of the exact bench-
marks reported below, and encourage third-party implementations of the open CPP specification
for independent validation.

"https://apps.apple.com/app/id6757994770
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6.2 Experimental Setup

We evaluated XOR-CI across 10,000 evidence capture sessions: session sizes 1-500 items (uni-
formly distributed), item sizes 2 KB-15 MB (log-uniform distribution reflecting typical photo/video
mix), devices iPhone 14 Pro and iPhone 15 Pro Max, iOS versions 17.4 and 18.1.

Scope limitations. Our evaluation covers session sizes up to 500 items on two device mod-
els. Performance on older devices (e.g., iPhone 11 with A13 chip), devices without hardware-
accelerated SHA-256, or Android devices with varying StrongBox support may differ. While
Corollary 5.2 provides security guarantees for n up to 22°, performance characteristics at ex-
treme scales (e.g., n > 10,000) have not been empirically validated and may differ due to
memory pressure, Secure Enclave throughput limits, or TSA rate limiting. Deployments tar-
geting large-scale evidence collection should conduct independent benchmarks. The evaluation
does not include network-level adversarial tests (e.g., TSA communication interception, DNS
spoofing) or side-channel measurements; these represent important future validation targets.

6.3 Performance Results

Table 4: XOR-CI operation latency (microseconds, n=10,000 sessions)

Operation Mean Median P95 P99 Max
Hash (SHA-256) 12.4 11.8 18.2 24.1 47.3
XOR (256-bit) 0.003 0.002 0.005 0.008 0.015
Update (Hash+XOR) 12.4 11.8 18.3 24.2 47.3
Finalize 0.8 0.7 1.2 1.5 2.1
Verify (n=100) 1,247 1,189 1,834 2419 4,731
TSA round-trip 287,000 245,000 512,000 891,000 2,340,000

The XOR aggregation step (0.003 ms mean) adds negligible overhead—three orders of mag-
nitude below hash computation (12.4 us) and five orders below TSA communication (287 ms).
Total per-event overhead enables sustained rates exceeding 80,000 events per second. TSA la-
tency variability (P99: 891 ms; max: 2,340 ms) represents a practical bottleneck for real-time
applications and motivates the asynchronous anchoring design in CPP v1.5.

Table 5: State size comparison

Mechanism State Size (n items) Growth
Hash chain 32n bytes O(n)
Merkle tree 64n bytes O(n)
XOR Invariant 56 bytes O(1)
Full CPP proof 56 + 64n + TSA token O(n)

For a session of 100 items, the XOR invariant adds 56 bytes versus 6,400 bytes for a Merkle
tree—a 114 x reduction in completeness verification state.

6.4 Detection Efficacy

All omission attacks were detected with 100% accuracy. Zero false positives were observed
across 1,000 unmodified sessions.

Limitations of detection evaluation. Our detection tests use simulated attacks (random
deletion, substitution, insertion). These tests confirm the mathematical guarantees of Theo-
rem 5.1 but do not model sophisticated adversaries who might attempt partial recomputation
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Table 6: Omission detection results (n=1,000 sessions per configuration)

Attack Type Sessions Items/Sess. Omissions Detected Rate
Single deletion 1,000 50 1 1,000 100%
Multi deletion 1,000 50 5 1,000 100%
Substitution 1,000 50 1 replaced 1,000 100%
Reorder only 1,000 50 O (reorder) O (correct) —

Duplicate insert 1,000 50 1 dup added 1,000 100%
No attack 1,000 50 0 0 (correct) —

attacks, timing-based side channels against the Secure Enclave, or social engineering to ob-
tain session state. The 100% detection rate is expected from the construction’s mathematical
properties and should not be interpreted as robustness against all conceivable attack vectors.

6.5 Cross-Platform Verification

CPP mandates interoperability between iOS (Secure Enclave, ES256) and Android (Strong-
Box/TEE, ES256). We verified: (1) XOR invariants computed on iOS are correctly verified
on Android and vice versa; (2) RFC 8785 canonicalization produces identical byte sequences
on both platforms; (3) ES256 signatures generated by Secure Enclave verify via Android’s
java.security framework. Our test suite includes 500 cross-platform cases with 100% pass
rate.

We acknowledge that Android StrongBox support varies across manufacturers and chipsets;
not all Android devices provide equivalent hardware-backed guarantees to Apple’s Secure En-
clave. Deployments on devices without StrongBox fall back to software-based TEE (ARM
TrustZone), which has a broader attack surface.

7 Multi-Layer Architecture

7.1 Defense-in-Depth Model

CPP’s architecture composes four independent security layers:

Layer 4: Human Presence — Biometric binding (Face ID / Fingerprint)
Layer 3: Temporal Anchor — RFC 3161 TSA (independent third party)
Layer 2: Set Integrity — Completeness Invariant (this paper)

Layer 1: Item Integrity — Per-item SHA-256 + Merkle Tree + ES256

Each layer addresses a distinct attack vector: Layer 1 prevents content modification; Layer 2
prevents selective omission; Layer 3 prevents backdated forgery; Layer 4 prevents automated
fabrication.

An honest assessment: while the multi-layer approach provides defense-in-depth, it also
introduces complexity. Each layer has its own failure modes and trust assumptions. A system
where all four layers must succeed for security is only as strong as its weakest layer under
targeted attack; conversely, the design ensures that compromise of any single layer does not
defeat the entire system.
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Table 7: Completeness Invariant across VAP profiles

Profile  Attempt Type Outcome Types Application

CPP CAPTURE CAPTURED, CAPTURE_ERROR Media evidence
VCP SIG ORD, SIG_REJECT, SIG_ERROR Financial audit
CAP GEN_ATTEMPT GEN, GEN_DENY, GEN_ERROR AT content logs
DVP SENSE ACT, SENSE_ERROR IoT sensor chains

7.2 Application to Regulatory Domains
8 Limitations and Future Work

Set-level granularity. The Completeness Invariant detects that something changed but does
not identify which item was omitted. This is by design (privacy preservation) but limits foren-
sic triage when violations are detected. As Breitinger et al. [1] emphasize, timeline-based re-
construction requires item-level detail that set-level detection cannot provide. Future work
should explore hybrid constructions that provide configurable granularity—e.g., per-category
sub-invariants—at the cost of additional state.

Full-set verification requirement. Unlike Merkle trees, which allow O(logn) verification
of individual items, the Completeness Invariant requires the verifier to possess the entire evi-
dence set. For distributed verification or regulatory audits where only partial access is available,
this requirement may be impractical. Combined deployment with Merkle inclusion proofs (as
specified in CPP v1.5) partially addresses this, but increases overall proof complexity.

Static sets only. Once finalized and timestamped, the invariant cannot accommodate
legitimate additions or removals. Session-based scoping mitigates this for evidence capture
but not long-lived mutable collections. Dynamic tamper-evident logs such as Nitro [16] offer
better flexibility for append-only streams. Epoch-based invariants with chained commitments
represent a possible extension.

Random oracle model dependence. As discussed in Section 5.2, our security proof relies
on the ROM. Standard-model alternatives (MuHash, LtHash) exist but incur performance costs.
A formal comparison of concrete security under both models, instantiated with specific hash
functions, would strengthen the theoretical contribution.

Hardware trust assumptions. Security depends on TEE integrity (Section 5.6). Known
vulnerabilities in both Secure Enclave and Android TEE implementations mean this assumption
is not unconditional. TEE-independent constructions—potentially using multi-party computa-
tion or threshold signatures—could reduce hardware dependence at the cost of requiring online
cooperation.

Privacy vs. forensics tension. The privacy-preserving property of XOR aggregation
(the invariant reveals nothing about individual items) is advantageous for privacy-sensitive
deployments. However, in legal contexts such as United States v. Sterlingov [27], courts may
require full evidentiary transparency, potentially conflicting with privacy-preserving designs.
The tension between verifiable completeness and evidentiary disclosure requirements deserves
dedicated analysis in future work.

Cross-session privacy leakage. While a single invariant [ is indistinguishable from ran-
dom, an adversary observing invariants from multiple sessions that share common evidence
items may exploit correlations. If sessions S; and Sy share item e;, and the adversary knows all
other items in both sessions, they can compute H(e;) by XOR-cancellation. In practice, CPP
sessions use independent sid values, so identical content produces different hash values across
sessions (H (sid1||...) # H(sida||...)), preventing this specific cross-session analysis. However,
metadata correlations (session timestamps, item counts, file sizes) may still enable inference; a
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comprehensive privacy analysis considering auxiliary information is future work.

Multi-session integrity. The Completeness Invariant operates within a single session. If
an evidence collection spans multiple sessions (e.g., multi-day law enforcement investigation),
no mechanism guarantees that all sessions are presented—an adversary could omit an entire
session. Addressing this requires a session-level completeness commitment (a “session manifest”
invariant computed over session identifiers), which CPP v1.5 partially addresses through session
chaining but which deserves independent formal treatment.

Temporal resolution and inter-anchor vulnerability. Completeness guarantees are
bounded by the anchor interval—the time between successive RFC 3161 timestamps. Items
omitted and re-added between anchor points are undetectable, as noted by Vanini et al. [26] in
their analysis of timestamp interpretation.

This creates a quantifiable vulnerability window. Let At be the anchor interval. An adver-
sary controlling the Store can: (a) delete items captured after the last anchor, (b) recompute
the invariant over the remaining items, and (c) obtain a new TSA timestamp at the next anchor
point. The resulting proof is indistinguishable from a legitimate session with fewer items. The
risk is proportional to At: per-event anchoring (At — 0) eliminates this window entirely but
incurs one TSA round-trip per capture (287 ms mean, Table 4); daily anchoring (At = 24h)
leaves a full day’s evidence vulnerable.

CPP v1.5 defines three compliance tiers reflecting this trade-off:

e Bronze (per-session): Single TSA anchor at session finalization. Vulnerability window =
session duration. Suitable for short capture sessions (minutes).

e Silver (periodic): Anchor every k items or At seconds (configurable). Intermediate protec-
tion.

e Gold (per-capture): TSA anchor after each evidence item. No inter-anchor vulnerability
window. Required for high-assurance forensic applications.

We recommend that implementations targeting forensic or legal use cases deploy Gold-tier
anchoring. The 287 ms mean TSA latency is acceptable for typical evidence capture rates (1-10
items per minute for photographs), though video frame-level anchoring at 30 fps would require
approximately 8.6 seconds of TSA latency per second of video, which is impractical without
batching or local pre-commitment.

Post-quantum migration. As analyzed in Section 5.4, SHA-256 provides approximately
85-bit quantum collision resistance. Migration to SHA-3 or SHAKE256 provides improved
Grover resistance without protocol changes. However, we do not claim post-quantum security
for the full CPP stack, as the ES256 signature component is classically vulnerable.

Future directions. Combining XOR-CI with zkSNARK-based set membership proofs [30]
could enable verifying both completeness and per-item properties without accessing items, ad-
dressing both the full-set requirement and the privacy tension. Formal machine-checked proofs
in EasyCrypt or CryptoVerif would strengthen regulatory acceptance. Independent open-source
implementations of the CPP specification would enable reproducible benchmarking.

8.1 Generalization Beyond Evidence Capture

While this paper focuses on mobile evidence capture within the CPP framework, the Com-
pleteness Invariant construction is domain-independent. Any system that must commit to the
completeness of an unordered set of items and later detect omissions can instantiate the protocol
using only a collision-resistant hash function and the four operations of Definition 1.
Applicable domains include: (a) Regulatory audit trails for financial transactions (Mi-
FID II, SOX compliance) where auditors must verify that no trades were selectively omitted
from a reporting period; (b) Certificate log completeness as a lightweight alternative to Merkle-
tree consistency proofs when full-tree infrastructure is unavailable; (c) AI model training data
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manifests where dataset curators commit to the completeness of training data (relevant to EU
AT Act transparency requirements); (d) Supply chain attestation where participants commit to
the complete set of components or test results.

Scope limitations for generalization: The construction requires that events can be uniquely
identified and that a trusted initialization point (session start) exists. It does not naturally
extend to continuous, open-ended log streams without session boundaries; for such scenarios,
epoch-based windowing (committing a new invariant per epoch) is required. Multi-producer
environments (where multiple independent entities contribute to the same set) require a trusted
aggregator or distributed protocol to maintain the invariant—single-device TEE enforcement
does not apply. These extensions are identified as future work.

9 Conclusion

We have presented the Completeness Invariant, a lightweight cryptographic construction for
detecting omission attacks on evidence sets. By formalizing omission resistance and proving
security bounds under the random oracle model, we provide the first rigorous treatment of a
threat that existing tamper-evident mechanisms—hash chains, Merkle trees, digital signatures,
and content provenance standards such as C2PA—Ileave unaddressed.

Our construction builds on the well-established incremental hashing paradigm of Bellare
and Micciancio [8], adapting XOR aggregation with bounded set sizes, domain separation, and
hardware-backed computation for the specific constraints of mobile evidence capture. We do not
claim cryptographic novelty in the XOR primitive itself, but in the formal security definitions,
the specific countermeasure combination, and the validated deployment on consumer hardware.

The construction achieves practical efficiency: 0.003 ms XOR aggregation per event, 56-byte
constant verification state, and 100% detection rate across 10,000 simulated sessions. Integra-
tion within the CPP specification and VeraSnap application demonstrates that forensic-grade
completeness guarantees are achievable on consumer smartphones.

We have been explicit about limitations: ROM dependence, bounded set sizes, hardware
trust assumptions, the tension between privacy and forensic transparency, and the availability of
algebraically stronger alternatives (MuHash, LtHash) for deployments where our constraints do
not apply. While related standards such as RFC 4998 (ERS) address hash-tree preservation for
ordered archives, no existing specification addresses set completeness verification for unordered
collections via lightweight aggregation—the specific gap our work fills.

The Completeness Invariant provides a formally analyzed building block for the emerging
ecosystem of digital evidence management, regulatory audit trails, and content provenance
architectures.
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[28] Dziembowski et al. Accepted PETS 2025 ePrint 2024/1063
[29] Datta et al. Accepted IEEE S&P 2025 ePrint 2024/1066
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