
VeraSnap v1.5

"World First" Claim Integrated Assessment Report

Cross-Validated Integration by Three Independent Research Institutions

Report Date	February 11, 2026
Target Product	VeraSnap v1.5 (VeritasChain Co., Ltd.)
Methodology	Parallel investigation by 3 independent institutions with cross-validation
Integrated Confidence	0.70 (Medium-High)
Target Claim	World's first comprehensive cryptographic evidence capture platform as a consumer smartphone app

This report integrates analyses from three independent research institutions and does not constitute legal advice. The legal defensibility of "world first" claims varies by jurisdiction.

Table of Contents

- Executive Summary
- Chapter 1: Methodology Comparison of Three Research Institutions
- Chapter 2: Integrated Prior Art Timeline
- Chapter 3: Competitive Product Comparison (3-Institution Integration)
- Chapter 4: Novelty Assessment by Feature (3-Institution Integration)
- Chapter 5: Resolution of Inter-Institutional Disagreements
- Chapter 6: Four-Axis Evaluation Conclusions
- Chapter 7: Integrated Risk Assessment
- Chapter 8: Recommendations
- Chapter 9: Final Conclusions
- Appendix A: Products Surveyed
- Appendix B: Patent Survey Summary
- Appendix C: Integrated Reference List

Executive Summary

Three independent research institutions (Institutions A, B, and C) independently verified the "world first" claim stated in the VeraSnap v1.5 press release, each using distinct methodologies.

Institution A: Skeptical-empiricist approach (strict public documentation verification, exhaustive survey of 12+ products)

Institution B: Technical analysis and physics-based verification (academic validation of sensor principles)

Institution C: Prior art and patent investigation (USPTO/EPO/JPO/WIPO patent search, four-axis evaluation framework)

Integrated Conclusion of Three Institutions

Evaluation Axis (Proposed by Institution C)	Verdict	Agreement
First Idea	No – All individual technologies have prior research/filings	3/3
First Filing	No – Prior patent families exist for sensor + timestamp + signature	3/3
First Public Demo	Conditional No – No prior demo of 4-detection integration confirmed	3/3
First Commercial Product	Possible within self-defined scope	3/3

Integrated Confidence: 0.70 (Medium-High) – No consumer smartphone app fulfilling VeraSnap v1.5's self-defined composite requirements (4 fraud detection features + RFC 3161 + CPP integration) was identified in any of the three investigations. However, prior art for individual components is abundant, and complete absence proof including non-public implementations and closed pilots is inherently impossible.

Per-Element Assessment Summary

Element	Institution A	Institution B	Institution C	Integrated Verdict
4-feature integration	Defensible (structural fragility)	Very high certainty, legitimate	Possible within self-definition	Defensible
IMU tremor FFT analysis	Genuinely novel	Outstanding technical originality	No prior art found	Strongly defensible as world first
SW 3-modal screen detection	Novel in consumer apps	High novelty	Individual tech known; fusion is novel	Strongly defensible as world first
Barometric environmental attestation	CameraV has prior art	Novel as "analysis"	ProofMode etc. prior exists	Conditionally defensible
NTP time consistency verification	Functional equivalents exist	Unique verification mechanism	Secure time direction preceded	Conditionally defensible

Chapter 1: Methodology Comparison

1.1 Institution A – Skeptical-Empiricist Approach

Institution A adopted strict criteria where only features explicitly confirmed in public documentation are considered "implemented." The survey covered 12+ products including Truepic, CameraV/InformaCam, ProofMode, CertiPhoto, Click Camera, Google Pixel 10 C2PA, Sony Camera Authenticity, eyeWitness to Atrocities, Numbers Protocol, Serelay, Amber Video, and Microsoft Content Integrity. Undocumented features were treated as "Unknown."

1.2 Institution B – Technical Analysis and Physics-Based Verification

Institution B verified the physical principles underlying each sensor technology (barometric measurement precision, physiological tremor frequency characteristics, moire interference optics) against academic literature. The assessment covered FFT-based frequency analysis, Sobel filter edge detection, and rolling shutter effect theoretical foundations, analyzing CPP and C2PA positioning within international standardization frameworks.

1.3 Institution C – Prior Art and Patent Investigation

Institution C proposed a four-axis evaluation framework (First idea / First filing / First public demo / First commercial product) and conducted cross-jurisdictional patent database searches across USPTO/EPO/JPO/WIPO. Source priority was: (a) primary sources (patent publications, standard specifications), (b) peer-reviewed papers (IEEE/USENIX), (c) reliable media reporting. Key analyses included USENIX Security papers ('21 mID, '25 Scoop) and Truepic patent families.

1.4 Methodological Complementarity

Institution	Primary Analysis Axis	Central Question
A: Product Market Survey	Public document verification, 12+ product comparison	Is it implemented in competing products?
B: Physics/Engineering Validation	Sensor principle verification, signal processing evaluation	Is it technically feasible and novel?
C: IP/Academic Prior Art	Patent search (4 offices), USENIX etc. papers	Is it preceded by concepts/filings/papers?

Chapter 2: Integrated Prior Art Timeline

Individual technology elements all have prior concepts, filings, or implementations between 2001 and 2025. VeraSnap v1.5's novelty is limited to integrating these individual elements as a "specific combination" in a "consumer app."

Year	Prior Art Event	Source
2001	RFC 3161 (TSA timestamp standard) published	C
2008	ATI Technologies: Rolling shutter x flicker detection patent (priority) WO/2010/054484, EP2356811, JP5866200B2	C
2009	NHK (Japan Broadcasting): Monitor recapture moire reduction patent	C
2012	CameraV/InformaCam: Raw barometric (hPa), accelerometer, gyroscope data in PGP-signed J3M metadata (consumer app)	A
2015	Moire presentation attack detection research (face auth.) / Garcia & de Queiroz, IEEE TIFS / Truepic image auth. patent	B, C
2016	CertiPhoto: RFC 3161 TSA + NF Z42-013 hash chain (consumer app)	A, B
2017	ProofMode (WITNESS/Guardian Project): Crypto signature + sensor snapshot	A, C
2020	Truepic x Qualcomm: Secure enclave time/location tagging prototype	C
2021	Truepic: Sensor + TSA server + digital signature patent (priority 2021-03-10) USENIX Security '21 mID: Moire-based screen photo forensics	C
2022	C2PA specification published (includes RFC 3161 timestamp requirements)	C
2025	USENIX Security '25 Scoop: Recapture attack definition, depth mitigation	C
2026	VeraSnap v1.5: Claims 4 detection + RFC 3161 + CPP integration (Feb 11)	A, B, C

Chapter 3: Competitive Comparison (3-Institution Integration)

3.1 Integrated Comparison Matrix – Fraud Detection / Physical Sensors

Feature	VeraSnap v1.5	Truepic	CameraV	ProofMode	CertiPhoto	Click Camera
Barometric environmental attestation	Yes w/ analysis	Partial GPS assist [A]	Partial raw data (2012~) [A]	Partial altitude only [A]	No	No
IMU tremor FFT analysis	Yes 8-12Hz	No [A][C]	No raw only [A]	No	No	No
NTP time consistency	Yes client-side	Partial server-side [A][C]	No	No	No	No
SW screen recapture (3-modal)	Yes moire+flicker +luminance	Partial proprietary [A][C]	No	No	No	No
RFC 3161 TSA	Yes [A][B][C]	Yes [A][C]	No PGP [A]	No Blockchain [A]	Yes (2016~) [A][B]	No Blockchain [A]
Biometric binding	Yes [A][B]	No [A]	No	No	No [A][B]	Yes (2024~) [A]
XOR completeness invariant	Yes [A][B]	No	No	No	No	No
Consumer app	Yes	No SDK [A][C]	Yes [A]	Yes [A][C]	Yes [A]	Yes [A]

3.2 Closest Competitor Analysis

Truepic – Greatest Potential Competitor

3-Institution Assessment: Truepic is the most technically advanced competitor, implementing approximately 3.5 of 5 major components. It uses barometric data for GPS corroboration, runs 35 authenticity tests per image, and employs RFC 3161-compatible timestamps. However, it operates as an enterprise SDK, not a consumer app. No IMU tremor analysis is documented. Truepic's patent (priority 2021-03-10) covers "multiple sensors + TSA server signature + digital signature" but direct overlap with VeraSnap's 4-detection integration was not confirmed.

CameraV/InformaCam – Critical Prior Art

Institution A Assessment: CameraV's J3M metadata format records barometric pressure (pressureHPAOrMBAR), accelerometer (acc_x, acc_y, acc_z), gyroscope (pitch, roll, azimuth), ambient light, and temperature in PGP-signed metadata. Operational since circa 2012, it constitutes clear prior art for raw barometric and IMU data recording in evidence capture. However, it does not implement FFT-based tremor pattern analysis or 3-modal fusion screen detection. VeraSnap's novelty lies in "analysis" not "recording" – a distinction critical for claim positioning.

CertiPhoto – RFC 3161 Prior Art

3-Institution Consensus: CertiPhoto has provided RFC 3161 timestamps (via DigiCert/GlobalSign) since 2016, with NF Z42-013 compliant hash chains. Claiming "world first" for "RFC 3161 timestamped evidence camera" is not viable. VeraSnap's claim must be limited to the "integration" of RFC 3161 with other feature sets.

Chapter 4: Per-Feature Novelty Assessment (3-Institution Integration)

4.1 IMU Physiological Tremor Pattern Analysis (8-12Hz FFT)

Integrated Verdict: Most Strongly Defensible as World First **** | 3-Institution Agreement: Complete

Institution	Assessment
A	Not found in any consumer app, enterprise product, or academic system. A genuinely novel concept.
B	Outstanding technical originality. Physics-based human presence proof. Academic research reports 95-97% accuracy.
C	Neither patent nor academic search found IMU tremor FFT application for evidence capture anti-fraud.

Prior Art Risk: Low. All three institutions unanimously confirmed absence of prior art. Medical IMU tremor analysis is established, but application to digital evidence anti-fraud was not found in academic papers, patents, or commercial products.

4.2 Software-Based 3-Modal Fusion Screen Recapture Detection

Integrated Verdict: Strongly Defensible (individual elements academically known) *** | Substantial Agreement

Prior Art Risk: Medium. Individual techniques have rich prior research and patents. "Fusion" and "consumer app implementation" are the core of novelty. The possibility that Truepic's 35 tests include similar analysis cannot be excluded (non-public, thus unevaluable).

4.3 Barometric Environmental Attestation

Integrated Verdict: Conditionally Defensible *** | Agreement (CameraV prior art acknowledged)

Prior Art Risk: High. CameraV (circa 2012) records raw barometric sensor data (hPa/mbar) in PGP-signed J3M metadata. Truepic also uses barometric data for GPS corroboration. VeraSnap's novelty is in "environmental stability analysis" (weather cross-validation, indoor/outdoor estimation), not barometric data recording itself.

4.4 NTP-Based Time Consistency Verification

Integrated Verdict: Conditionally Defensible *** | Agreement (functional equivalents acknowledged)

Prior Art Risk: Medium. Clock tampering detection is achieved by multiple products through different means (Truepic: server-side TSA, Google Pixel 10: on-device TSA). Truepic x Qualcomm (2020) described "querying government time servers for verified timestamps." VeraSnap's novelty lies in the specific implementation of "client-side NTP server delta measurement and recording."

Chapter 5: Resolution of Inter-Institutional Disagreements

Issue	Institution A	Institution B	Institution C
Overall assessment	Narrowly defensible but structurally fragile	Very high certainty, legitimate	Possible within self-definition (confidence 0.65)
Individual tech prior art	Detailed prior art enumeration	Emphasizes integration novelty	Strict 4-axis prior art judgment
CPP positioning	Self-referential ecosystem	IETF draft submission affirmed	IETF Internet-Draft factually confirmed
CameraV assessment	Critical prior art, detailed analysis	Not directly compared	Indirect reference via ProofMode
Truepic threat level	Closest competitor (3.5/5 elements)	B2B SDK, not direct competitor	Strong precedent but 4-detection evidence insufficient

5.1 Points of Convergence

Convergence 1: No consumer app with 4-feature integration was found. None of the three investigations identified a prior product fully matching VeraSnap's self-definition.

Convergence 2: Individual technologies have abundant precedent. RFC 3161 (2001), moire detection (2015~), flicker detection (patent 2008), sensor data bundling (CameraV 2012) – all components have prior art.

Convergence 3: IMU tremor FFT analysis has the highest novelty. All three institutions confirmed absence of prior art for IMU tremor analysis as an evidence capture anti-fraud mechanism.

Convergence 4: Truepic is the greatest potential threat. The possibility that non-public internal implementations overlap with VeraSnap cannot be excluded.

Convergence 5: "World first" depends on definition scope. Denied in broad sense (individual technologies), possible in narrow sense (specific composite integration).

Chapter 6: Four-Axis Evaluation Conclusions

Evaluation Axis	Verdict	Rationale	Agreement
First Idea	No	RFC 3161 is 2001 IETF standard. Moire detection from 2015 ⁷ . Flicker detection ATI patent (2008). Sensor bundling CameraV (2012).	3/3
First Filing	No (broad)	Truepic patent (priority 2021-03-10) covers sensor + TSA + signature. ATI patent precedes flicker. No prior patent for full 4-detection + CPP composite.	3/3
First Public Demo	Conditional No	Truepic x Qualcomm (2020) prototype reported. Scoop (USENIX'25) research implementation. No prior demo of 4-detection integration confirmed.	3/3
First Commercial Product	Possible within scope	No consumer app fulfilling all requirements identified by any of the 3 institutions. Complete absence proof including non-public implementations is impossible.	3/3

Chapter 7: Integrated Risk Assessment

7.1 Prior Art Risk Matrix

Risk Factor	Probability	Impact	Source	Mitigation
Truepic non-public implementation overlap with 4 detections	Medium	High	A, C	Use "based on public information" qualifier
CameraV barometric + IMU raw data recording as prior art	High	Medium	A	Clearly distinguish "analysis" vs "recording"
CertiPhoto RFC 3161 precedent (since 2016)	Certain	Medium	A, B	Limit to "integration" context
KYC/liveness SDK screen detection precedent	Medium	Low	A	Differentiate from "general evidence capture"
Non-public closed pilot existence	Low-Med	Medium	C	Acknowledge impossibility of complete absence proof
Truepic patent claim conflict	Low-Med	High	C	CPP-specific differentiation, FTO analysis

7.2 Confidence Integration

Institution	Confidence Expression	Numeric
A	Narrowly defensible but structurally fragile	0.60
B	Very high certainty, legitimate	0.85
C	Explicit numeric: 0.65	0.65
Integrated	Medium-High	0.70

Chapter 8: Recommendations

8.1 Recommended Claim Language

Most defensible expression (recommended):

VeraSnap v1.5 is the world's first*1 consumer smartphone app to integrate multi-sensor fraud detection (barometric environmental analysis, IMU tremor pattern FFT analysis, NTP time consistency verification) and software-based 3-modal fusion screen recapture detection (moire + flicker + luminance distribution) with RFC 3161 cryptographic timestamps and the Content Provenance Protocol (CPP) as a cryptographic evidence capture platform.

Recommended footnote:

*1 As a consumer smartphone app integrating barometric sensor environmental stability analysis, IMU physiological tremor pattern FFT analysis for human presence estimation, client-side NTP server time delta verification, and software-based multi-modal screen recapture detection (moire pattern FFT + rolling shutter flicker detection + luminance distribution analysis in 3-modal fusion) with RFC 3161 cryptographic timestamps and Content Provenance Protocol (CPP, published as IETF Internet-Draft draft-vso-cpp-core). As of February 11, 2026, based on publicly available information. Prior research and implementations exist for individual component technologies.

Expressions to avoid:

- x Unqualified "world's first digital evidence app"
- x "World's first timestamped camera" (CertiPhoto 2016 precedes)
- x "World's first sensor-data evidence camera" (CameraV 2012 precedes)
- x "World's first open-standard evidence camera" (multiple C2PA products precede)
- x Claiming "world first" for individual technologies (moire detection, barometric recording, etc.)

8.2 Priority Actions for Credibility Enhancement

#	Action	Priority	Rationale
1	Publish v1.5 technical documentation (CPP v1.5 spec update, technical blog)	Critical	A: Resolve verification gap
2	Commission third-party security audit	Critical	A: Establish independent verification
3	Submit academic paper (IEEE/ACM/USENIX)	High	C: Establish formal prior art record
4	File patents (IMU tremor FFT, 3-modal fusion scoring)	High	C: Secure IP precedence
5	Promote external CPP adoption (SDK release, partner acquisition)	High	A: Substantiate "open standard"
6	Publish CameraV differentiation white paper	Medium	A: Reduce prior art risk
7	Provide technical demos to independent media	Medium	A: Obtain non-paid coverage

Chapter 9: Final Conclusions

9.1 Integrated Verdict of Three Institutions

Three-Institution Integrated Final Conclusion

Under the definition stated in the press release (integration of four fraud detection features + RFC 3161 + CPP), no consumer smart device "world first" claim is supported.

However, "world first" as "First Idea," "First Filing," and "First Public Demo" is denied. Novelty lies not in invention of individual features, but in their integration.

9.2 Per-Element Final Verdict

Element	Defensibility	Agreement	Notes
IMU tremor FFT analysis (evidence capture)	***** Strongest	Complete	No prior art found. Primary differentiator.
SW 3-modal fusion screen detection	**** Strong	Substantial	Individual tech known. Fusion in consumer app is novel.
4-feature integration	**** Strong	Complete	No prior product found. Narrow construction risk.
XOR completeness invariant	**** Strong	A, B agree	Unique cryptographic solution for deletion detection.
Barometric environmental "analysis"	*** Conditional	Agree	CameraV has raw data recording prior art.
NTP client-side verification	*** Conditional	Agree	Functional equivalents exist. Implementation method is novel.
RFC 3161 TSA (standalone)	*	Complete	CertiPhoto (2016) precedes.

Integrated Confidence: 0.70 (Medium-High)

Appendix A: Products Surveyed (3-Institution Integration)

#	Product	Developer	A	B	C
1	Truepic / Truepic Lens SDK	Truepic, Inc.	Y	Y	Y
2	CameraV / InformaCam	Guardian Project	Y	-	-
3	ProofMode	Guardian Project / WITNESS	Y	Y	Y
4	CertiPhoto	CertiPhoto SAS	Y	Y	-
5	Click Camera	Nodle	Y	Y	-
6	Google Pixel 10 C2PA	Google	Y	-	-
7	Sony Camera Authenticity	Sony	Y	-	-
8	eyeWitness to Atrocities	eyeWitness	Y	-	-
9	Numbers Protocol / Capture Cam	Numbers Protocol	Y	-	-
10	Serelay / Idem	Serelay Ltd.	Y	-	-
11	Amber Video	Amber (defunct)	Y	-	-
12	Microsoft Content Integrity	Microsoft	Y	-	-
13	Scoop (academic)	USENIX Security '25	-	-	Y
14	mID (academic)	USENIX Security '21	-	-	Y
15	SafeScreen (academic)	U. Glasgow	Y	-	-
16	iProov / Jumio / Onfido	Various (KYC)	Y	-	P
17	Truepic x Qualcomm Proto.	Truepic / Qualcomm	-	-	Y

Appendix B: Patent Survey Summary (Institution C)

Priority/Filing Date	Applicant	Publication Numbers	Related Technology
2008-11-14	ATI Technologies ULC	WO/2010/054484 EP2356811, JP5866200B2	Rolling shutter x flicker detection circuit
2009	NHK (Japan)	JP (see Investigation C)	Monitor recapture moire reduction
2015-08-03	Truepic LLC	US (see Investigation C)	Image authentication app time/location info
2021-03-10	Truepic Inc	US/EP/WO family	Multiple sensors + TSA server signature + digital sig.

Appendix C: Key References (Abridged)

Institution A: Truepic (truepic.com), Guardian Project InformaCam, ProofMode ([GitHub](https://github.com/ProofMode/ProofMode)), C2PA (c2pa.org), CAI (contentauthenticity.org), CPP (github.com/veritaschain/cpp-spec), SafeScreen (ACM 10.1145/3743715)

Institution B: VeraSnap press release, VeritasChain (veritaschain.org), Garcia & de Queiroz IEEE TIFS 2015, Physiological tremor literature (MDPI Sensors), IETF Datatracker draft-vso-cpp-core, XOR completeness invariant (PR TIMES)

Institution C: USENIX Security '21 mID, USENIX Security '25 Scoop, C2PA specification, WIPO PCT Gazette WO/2010/054484, EPO EP2356811, JPO JP5866200B2, Truepic patent families (priority 2015, 2021), CAI technical materials

This report integrates analyses from three independent research institutions and does not constitute legal advice. The legal defensibility of "world first" claims varies by jurisdiction. Consultation with IP/legal professionals is recommended for final claim language decisions.

Investigation completed: February 11, 2026 | Integrated Confidence: 0.70 (Medium-High)