

第 62 回 (2025 年度)「ベルツ賞」 受賞者/受賞論文

1等受賞論文

「臓器間神経ネットワークによるインスリン分泌・膵β細胞増殖制御機構の解明とインスリン分泌低下性糖尿病治療への応用」

東北大学大学院医学系研究科 糖尿病代謝・内分泌内科学分野 教授

片桐 秀樹 先生

東北大学病院 糖尿病代謝・内分泌内科 特命教授

今井 淳太 先生

論文抄録

インスリン分泌低下は糖尿病の重要な病態基盤であり、膵β細胞機能の低下と膵β細胞量(数)の減少によって引き起こさ れる。このうち、膵β細胞量の減少によるインスリン分泌低下性糖尿病に対して膵β細胞を増量する薬物療法はなく、これは糖 尿病根治療法開発が進まない大きな要因となっている。一方、生物の体には、肥満などの際に膵β細胞が代償性に増殖しイ ンスリン分泌を増加させることによって血糖値の上昇を抑制する仕組みが存在する。この仕組みを人為的に制御することができ れば膵β細胞量減少を基盤としたインスリン分泌低下性糖尿病の治療開発につながると考えられる。我々は、臓器間ネットワ ークの研究から、肝臓の extracellular-signal regulated kinase (ERK)経路が活性化することが起点となり、内臓神経求 心性線維→中枢神経→迷走神経遠心性線維という神経経路を介して糖応答性インスリン分泌や膵β細胞増殖を促進すると いう、肝臓–膵β細胞間神経ネットワークを明らかにし、これが肥満時の代償性膵β細胞反応として機能していることを示した。 また、この神経ネットワークにおいて、肥満の際に肝臓 ERK 経路が活性化する腸管を介したメカニズム、迷走神経の膵島選択 性につながる解剖学的特徴、迷走神経シグナルが膵β細胞増殖を誘導する分子メカニズムなどを明らかにしてきた。さらに、オ プトジェネティクスの手法を用いてマウス個体において膵臓に分布する迷走神経を選択的に刺激する手法を開発し、膵臓迷走 神経を刺激することによりインスリン分泌や膵β細胞増殖が促進されることを示した。そして、インスリン分泌低下性糖尿病モデ ルマウスの長期にわたる治療に成功し、現在、迷走神経刺激によるヒトでの効果の検証が進んでいる。また、化合物での臓器 間ネットワークの制御を目指して、in vivo における膵β細胞の増殖を同一個体で経時的に観察することができる新たな実験 手法を開発し、求心性神経に働きかけ膵β細胞の増殖を促進する分子の探索につなげている。それに加え、増加した膵β細 胞量を環境変化よるインスリンの需要低下に応じて減少させるメカニズムも明らかにし、適切な膵β細胞量が維持される仕組 みの一端を解明した。以上の成果から、体に内在する臓器間ネットワークの仕組みを活用することにより、インスリン分泌低下 性糖尿病の根治治療法へとつながることが期待される。

片桐 秀樹 先生 ご略歴・受賞歴

<学歴>

1981 年 4 月 東京大学教養学部理科 Ⅲ 類 入学
 1983 年 4 月 東京大学医学部医学科 進学
 1987 年 3 月 東京大学医学部医学科 卒業

<研究歴・職歴>

八九定"毗准/	
1987 年6 月	東京大学医学部附属病院内科(第三内科·物療内科)研修医
1988 年 6 月	東芝中央病院内科勤務
1989 年6 月	朝日生命成人病研究所附属丸の内病院勤務
1990 年7月	東京大学医学部附属病院 第三内科 医員
2001 年 9 月	東北大学医学部附属病院 糖尿病代謝科 医員
2001年12月	東北大学医学部附属病院 糖尿病代謝科 助手
2003 年1 月	東北大学大学院医学系研究科 創生応用医学研究センター 再生治療開発分野 教授
2010 年4月	東北大学大学院医学系研究科 創生応用医学研究センター 代謝疾患学分野 教授
2010 年4月	東北大学大学院医学系研究科 代謝疾患医学コアセンター センター長
2010 年12 月	東北大学病院糖尿病代謝科 科長代行
2013 年4 月	東北大学病院糖尿病代謝科 科長
2013 年 5 月	東北大学大学院医学系研究科 糖尿病代謝内科学分野 教授
2020 年4 月~	東北大学大学院医学系研究科 創生応用医学研究センター センター長
2023 年4 月	東北大学病院糖尿病代謝・內分泌內科 科長
2024 年 4 月~	東北大学大学院医学系研究科 糖尿病代謝・内分泌内科学分野 教授
2025 年4 月~	東北大学 SiRIUS(医学イノベーション研究所)所長

<受賞歴・表彰歴>

1994年	日本内科学会研究奨励賞
2006年	日本学術振興会賞
2007年	日本糖尿病学会賞(リリー賞)
2007年	日本内分泌学会研究奨励賞
2007年	日本医師会医学研究助成費(現 医学研究奨励賞)
2014年	文部科学大臣表彰 科学技術賞 (研究部門)
2020年	日本糖尿病学会賞(ハーゲドーン賞)
2024年	日本肥満学会 学会賞

今井 淳太 先生 ご略歴・受賞歴

<学歴>

1993年 4月	東北大学医学部医学科 入学	
1999年3月	東北大学医学部医学科 卒業	
2002年 4月	東北大学大学院医学系研究科医学専攻 入	、学
2006年3月	東北大学大学院医学系研究科医学専攻 修	₹ 7

<研究歴・職歴>

1999 年 4 月	いわき市立総合磐城共立病院(現いわき市医療センター)内科勤務
2007年1月	東北大学病院 糖尿病代謝科 助教
2010 年4 月	東北大学病院 糖尿病代謝科 講師
2018 年 4 月	東北大学大学院医学系研究科 糖尿病代謝内科学分野 准教授
2023 年4 月	東北大学病院 糖尿病代謝内分泌内科 科長代行
2024 年4 月~	東北大学大学院医学系研究科 糖尿病代謝・內分泌内科学分野 准教授
2025 年4 月~	東北大学病院 糖尿病代謝内分泌内科 科長·特命教授

<受賞歴・表彰歴>

2009年	日本内分泌学会若手研究奨励賞
2018年	日本内分泌学会研究奨励賞
2021年	日本糖尿病・肥満動物学会 研究賞

2 等受賞論文

「膵β細胞転写因子の異常によるインスリン分泌低下型糖尿病の発見とその発症機構の解明」

熊本大学大学院生命科学研究部病態生化学講座 教授

山縣 和也 先生

論文抄録

膵β細胞におけるインスリン分泌低下は糖尿病の大部分を占める 2 型糖尿病の基本的病態であるが、その分子機構は不明である。筆者は maturity-onset diabetes of the young (MODY)とよばれる単一遺伝子異常による糖尿病をモデルケースとすることでインスリン分泌低下の成因についての研究を進めた。まず筆者らは MODY 家系を用いたボジショナルクローニングを行い、hepatocyte nuclear factor 1 (HNF1a) および HNF4a というβ細胞発現転写因子をコードする HNF1A および HNF4A の遺伝子異常によりインスリン分泌低下型の糖尿病が発症することを発見した。MODY 患者の遺伝子検索の結果、HNF1A 遺伝子は最も頻度の高い MODY 原因遺伝子であった。また患者で同定した変異体や遺伝子改変マウスを用いた検討の結果、HNF 転写因子は糖輸送担体 GLUT2 や開口放出因子コレクトリンなどインスリン分泌に重要な遺伝子の発現を統合的に制御することでインスリン分泌を正常に保っていることを筆者らは明らかにした。さらに一般の 2 型糖尿病における HNF 遺伝子の関与について検討したところ、HNF1A 遺伝子 G319S 多型や HNF4A 遺伝子 R127W 多型、T130I 多型と 2 型糖尿病の関連が認められた。転写因子活性が大きく低下する HNF 遺伝子変異では MODY が発症し、機能低下が軽度な遺伝子多型の場合は 2 型糖尿病で認められるインスリン分泌低下の遺伝的リスクになるものと考えられた。本研究は HNF1a や HNF4a という転写因子がヒトのインスリン分泌に必須の役割を担っていることを世界ではじめて明らかにしたものであり、原因遺伝子の同定によりインスリン分泌低下型糖尿病患者の早期発見・早期治療が可能になった。

山縣 和也 先生 ご略歴・受賞歴

<学歴>

 1981 年 4 月
 大阪大学医学部 入学

 1987 年 3 月
 大阪大学医学部 卒業

 1987 年 4 月
 大阪大学大学院医学研究科博士課程 入学

 1991 年 3 月
 大阪大学大学院医学研究科博士課程 修了(医学博士)

<研究歴・職歴>

1991 年 4 月	吹田市民病院内科
1992 年 6 月	大阪大学医学部研究生(第二内科)
1993 年 8 月	米国シカゴ大学生化学分子生物学部門リサーチアソシエイト
	ハワードヒューズ医学研究所アソシエイト
1996 年 8 月	米国シカゴ大学生化学分子生物学部門インストラクター
1997 年 2 月	大阪大学医学部研究生(第二内科)
1998 年 4 月	日本学術振興会特別研究員(PD)
2000 年 6 月	大阪大学助手大学院医学系研究科
2007 年 9 月	熊本大学大学院医学薬学研究部(生命科学研究部) 病態生化学講座教授
2013 年4月	熊本大学大学院生命科学研究部副研究部長
2015 年 4 月	熊本大学大学院生命科学研究部 分子酵素化学分野教授(併任)
2017 年 8 月	熊本大学大学院生命科学研究部 分子病理学分野教授(併任)
2018 年 5 月	熊本大学大学院生命科学研究部附属 健康長寿代謝制御センター長
2021 年 4 月	熊本大学大学院生命科学研究部長
2021 年 4 月	熊本大学大学院医学教育部長
2021 年4月~	熊本大学医学部長
2023 年4 月~	熊本大学大学院生命科学研究部附属 健康長寿代謝制御センター長

<受賞歴・表彰歴>

1999年	第 12 回日本内科学会研究奨励賞
2000年	第2回分子糖尿病学研究奨励賞
2002年	第5回日本臨床分子医学会学術奨励賞
2002年	第 22 回日本内分泌学会研究奨励賞
2007年	平成 19 年度日本糖尿病学会賞(リリー賞)
2007年	平成 19 年度日本医師会医学研究助成
2017-2019年	熊本大学研究企画表彰
2021年	熊本大学教育活動表彰

以上