

紫外線(UV)を浴びた直後の DNA 修復が UV ディフェンス力を決める ―光老化への影響が知られる DNA のキズ、早期修復に着目―

ポーラ・オルビスグループの研究・開発・生産を担うポーラ化成工業株式会社(本社:神奈川県横浜市、社長:片桐 崇行)は、紫外線(UV)による肌細胞の DNA 損傷(キズ)に対し「直後にどれだけ修復できるか」が、後のキズ蓄積 に影響を与えることを明らかにしました。

- ① UV を浴びた直後の DNA 修復力には、表皮細胞の IGF1R*1 が減少しないことが重要である
- ② IGF1R が減少した表皮細胞では、直後の修復力が不足し、DNA のキズが蓄積しやすくなる
- ③ アルニカエキスは、表皮細胞の IGF1R を増加させるはたらきがある ※1 Insulin-like Growth Factor 1 Receptor の略。 細胞表面で IGF1 を受け取り、 DNA 修復を始めるシグナルを出す受容体。

UV を浴びた「直後」の DNA 修復と IGF1R の働きに着目

ヒトの肌は、他の哺乳類に比べて毛が少なく、UV の影響 を受けやすいと言われています。特に UVB 波(UVB)は表 皮細胞の DNA に直接キズを与えます。 通常は、細胞が備え る DNA 修復力で回復しますが、加齢などにより修復力が弱 まるとキズが蓄積し、シミやシワなどの光老化*2 につながり ます。

DNA 修復には多くの要素が関わります。 そして DNA のキ ズは UV を浴びた「瞬間」から発生します。しかし、その UV によるキズに対し、直後の修復力と、その後のキズ蓄積へ与 える影響については、十分に分かっていませんでした。

そこでポーラ化成工業は、UVを浴びた「直後」の DNA 修 復力に着目しました。加齢した肌で減少し、早期の DNA 修 復を含む様々な事象に関わる因子 IGF1*3 の受容体 「IGF1R」と、「UV を浴びた直後の DNA 修復力」の関わりを 調査しました(補足資料1)。

- ※2 長期間紫外線を浴びることで肌の老化が加速される状態。
- ※3 Insulin-like Growth Factor 1 の略。成長に関わる因子タンパク質の1つ。

IGF1R が減少した表皮細胞は、UV を浴びた直後の DNA 修復力が減少し、DNA のキズが蓄積しやすい

その結果、IGF1R 遺伝子発現量が減少した表皮細胞で は、DNA 修復因子の働きが、UV 照射 10~30 分後の間は 減少し、60 分後には正常細胞との差がみられなくなりました (補足資料 2)。一方で、DNA のキズの量は増加し続け、60 分後には約4.6倍まで差が拡大しました(図1、補足資料3)。

このことから、IGF1R を介した、UV を浴びた直後の DNA 修復力が、その後のキズ蓄積量を左右するカギであることが 分かりました(図2)。 つまり、UV による肌のダメージを効果的 に防ぐには、UV をカットするだけでなく、肌側の DNA 修復 力、つまり「UV ディフェンスカ」も重要と言えます。

IGF1R を増加させるエキスを発見

さらに研究を進めた結果、アルニカエキスに表皮細胞の IGF1R 遺伝子発現量を約2 倍に増加させる働きを見出しま した(補足資料4)。

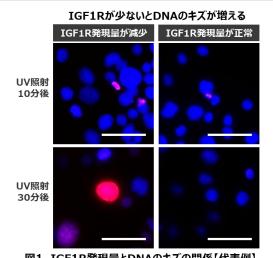
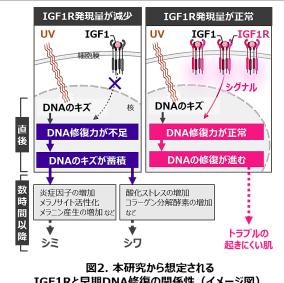



図1. IGF1R発現量とDNAのキズの関係【代表例】 IGF1R遺伝子発現量を人工的に減少させた表皮細胞または正常細胞に UVB (100mJ/cm²) を照射し、DNAのキズのマーカータンパク (yH2AX)を染色した画像。4つの画像の撮影条件は同じ。

スケールバー: 50µm 青色: 細胞核 赤色: DNAのキズ

IGF1Rと早期DNA修復の関係性(イメージ図)

ポーラ化成工業は今後も、より良い肌ケアにつながるよう、肌メカニズムについての理解を深める研究を継続して まいります。

【補足資料 1】 IGF1R を介した DNA 修復経路

UVB は表皮細胞の DNA に吸収され、DNA に直接キズを与えます。中でも「DNA 二本鎖切断」は細胞にとって深刻なキズです。細胞はこのキズに対する修復力を備えており、●ATM^{*4} がキズを検知し、●γH2AX^{*5} がキズに結合して修復因子を集め、●POLL^{*6} が合成した新しいDNA でキズをつなぎ直すという流れが知られています。また、IGF1R シグナルは DNA 修復の各段階の進行を広くサポートします。

これまで、これらの因子や IGF1R シグナルによる DNA 修復への関与は、主に UV を浴びた「30 分後〜数時間」の段階において調べられてきました。しかし DNA のキズは UV を浴びた「瞬間」に生じること、IGF1R を介した修復もより早い段階から作動する可能性に着目しました。 IGF1R が UV を浴びた「直後」から DNA 修復の「開始と進行」を担う可能性を考えたのです。

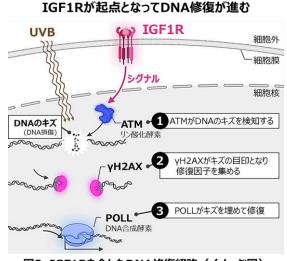
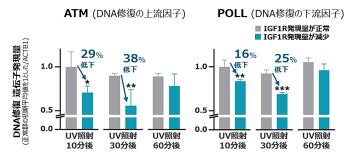


図3. IGF1Rを介したDNA修復経路(イメージ図)

- ※4 ataxia telangiectasia mutated の略。DNA 修復に関与する上流因子の1つ。
- ※5 phosphorylated H2A histone family member X の略。 DNA のキズ (DNA 損傷)の箇所に現れる、リン酸化された DNA を巻きつけるヒストンタンパク質の1つ。
- ※6 DNA polymerase lambda の略。 DNA 修復に関与する下流因子の1つ。


【補足資料 2】 IGF1R 遺伝子発現が減少すると、UV を浴びた直後の DNA 修復力は減少する

肌のIGF1Rは加齢などによって減少しますが、UVを浴びた直後の修復力への影響は不明でした。そこで実験的にIGF1R遺伝子発現量を減少させた表皮細胞を用い、UV照射直後のDNA修復に関わる遺伝子*7の働きを調べました。

その結果、IGF1R が減少した細胞では、 正常細胞に比べて、UV 照射 10分~30分 後の修復因子の遺伝子発現量が減少しま した。60分後には差はみられなくなりました (図 4)。

このことから、IGF1R 遺伝子発現量は UV を浴びた「直後」の修復力に関わること が示されました。

肌の $\operatorname{IGF1R}$ は加齢などによって減少しま $\operatorname{IGF1R発現量が減少した表皮細胞は、UV照射の直後のDNA修復力が減少$

図4. IGF1R発現量の差とDNA修復因子発現量の関係 IGF1R遺伝子発現量を人工的に減少させた表皮細胞もしくは正常細胞に、同量の UVB(100mJ/cm²)を照射し、10分~60分後のDNA修復遺伝子発現量を測定した。 各群n=4, 平均値+標準偏差, *p<0.05, **p<0.01, ***p<0.001, t-test.

※7 DNA のキズを検知し修復を始める酵素 ATM と、壊れた DNA のキズの箇所を新しい DNA で埋め元通りにする酵素 POLL の 2 因子を対象とした。

【補足資料 3】 IGF1R 遺伝子発現が減少すると、DNA のキズの蓄積量が増加する

〈図 1 の実験の詳細〉 DNA のキズの目印である γH2AX^{**8} タンパク質を染色し、その発現量を測定しました。

その結果、IGF1R が減少した細胞では、正常細胞に比べて、UV 照射 10 分後にはキズの量が多くなり、30 分後には差がさらに拡大し、60 分後には約 4.6 倍に達しました(図 5)。

注目すべきは、補足資料2で前述したように、UV 照射60分後には修復因子の発現差が無くなっていたにも関わらず、DNAのキズ蓄積は進行した点です。

これは、IGF1R の発現量の差が、その後の DNA キズ蓄積量を大きく左右することを示しています。 つまり、 DNA キズの蓄積を防ぐためには、IGF1Rを介した UV を浴びた「直後の DNA 修復効率」が重要と考えられます。

IGF1R発現量が減少した表皮細胞は、 UV照射直後からDNA損傷が増加し続ける

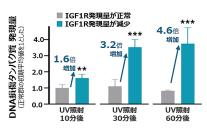


図5. IGF1R発現量の差とDNAのキズの量の関係 IGF1R遺伝子発現量を人工的に減少させた表皮細胞もしくは正常細胞に、同量のUVB(100mJ/cm²)を照射し、10分~60分後の細胞のDNAのキズのタンパク質(γH2AX)を染色し、撮像画像を用い発現量を測定した。

各群n=4, 平均值+標準偏差, **p<0.01, ***p<0.001, t-test.

※8 DNA のキズ(DNA 損傷)の目印として広く用いるマーカーである γH2AX を、DNA のキズの程度を示す指標として使用した。

【補足資料4】表皮細胞のIGF1R の発現量を高める植物エキスの探索

表皮細胞の IGF1R を増加させる植物成分を探索した結果、アルニカから抽出したエキスが IGF1R 遺伝子発現量を 2 倍以上に増加させることが確認しました(図 6)。

アルニカはヨーロッパ原産の菊科の多年草で、古くから肌をすこやかに保つために親しまれてきた植物です。

アルニカエキスはIGF1R遺伝子発現量を増加させる



図6. アルニカエキスが 表皮細胞のIGF1R遺伝子 発現量に与える影響

表皮細胞にアルニカエキスを加え、 IGF1R遺伝子発現量を解析した。 各群n=4,平均値+標準偏差, **p<0.01, t-test.