	実証項目	実証結果/従来比較	特記事項
現場施工時間			施工部位(柱部と壁部)、建材(軽量鉄骨下地材
			と石膏ボード)によって、より最適なプレカット
			 施工の在り方(現場廃棄物の削減と現場の手間
			のバランス)を追求する必要がある。
	軽量鉄骨下地材		従来手法では3人体制のところ、BIM を活用した
	柱部	最大 13%減	- │ プレカットでは現場で計測や切断作業が削減さ│
		2.1	- │ れ 2 人体制での対応が可能 。但し、それを前提│
	壁部	最大 20%減	とした体制構築が必要。
-	石膏ボード		・BIMを活用したプレカット施工は、部材点数を
	柱部	4分/㎡ 減	抑え 、広範囲な施工の場合に作業時間削減の
			効果につながりやすい と考えられる。
			・施工部位によっては、最小限の現場加工が発生
	P立 女D	 1.5分/㎡ 減	し、作業人員数は従来手法と同様に必要
	壁部	1.577/111 /映 	↓
			BIM を活用したプレカット施工と在来手法の、施
			工部位によるすみ分け
		高速カッター等の使用頻度削	
安全性		減に伴い、火花・粉塵発生抑	-
制、労働災害要因を低減 現場廃棄物量 ※過去実績数値(割合)を参考に、従来手法によ			│ 法による施工部の廃棄物量の予測値を算出し比較
967	軽量鉄骨下地材	約 36% 減 ※予測値	・ロス率を最小化した発注
	11里以月17227	本3 00 70 / 94、	_ 「従来は現場でのあらゆるケースを想定し予め多め」
			に発注した建材が使われないまま廃棄物となる事
			例が少なくなかったが、プレカット BIM モデルで建
			材数量を正確に把握し、適切な数量での建材発注が 可能となり、発注したのに使わずに廃棄物となる建
			材量を減らすことができる)
	 石膏ボード	約 56%減 ※予測値	・納まり含め施工フェーズの BIM の精度をより
			高めれば、廃棄物量を減らす見込みが持てる。
			・高さのみのプレカット、幅はサイズを 1 種類
			に統一すれば搬入時のスペーサー(現場廃棄
			物となる) は不要となり、現場廃棄物量削減に
			寄与できる
二酸化炭素排出量			
※過去実績数値(割合)を参考に、従来手法による施工部の二酸化炭素排出量の予測値を算出し比較			
	軽量鉄骨下地材	約 36%減 ※予測値	建材重量にフォーカスし、一社)日本建築学会
	石膏ボード	約 60%減 ※予測値	「建物の LCA 指針」に基づき算出

【お客さまからの問合せ先】

野原ホールディングス株式会社

建設 DX 推進統括部

e-mail: info@build-app.jp

【報道関係者からの問合せ先】

野原ホールディングス株式会社

マーケティング部ブランドコミュニケーション課

(担当:森田、齋藤)

e-mail: nhrpreso@nohara-inc.co.jp

東亜建設工業株式会社

経営企画本部 DX 推進部

e-mail: toa-webmaster@toa-const.co.jp

TEL: 03-6757-3806

東亜建設工業株式会社

経営企画本部経営企画部 広報室

e-mail: toa-webmaster@toa-const.co.jp

TEL: 03-6757-3821