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Summary 
Embic’s Digital cognitive biomarkers (DCBs) are quantified representations of the unobservable 
(latent) cognitive processes that underlie overall cognitive function. The DCBs are generated for 
various encoding and retrieval processes with a hierarchical Bayesian cognitive processing 
(HBCP) model that analyzes item response data from commonly used wordlist memory (WLM) 
tests of learning, recall, and recognition. The model generates seven base DCBs, each represent-
ing the probability of information processed through different encoding (N1, N2, N3, or N4) or re-
trieval (R1, R2, or R3) pathways, to and from three distinct storage states (pre-task, transient, or 
durable storage states). There are three additional measures (M1, M2, and M3) that quantify a per-
son’s probability of recall from transient storage on immediate recall tasks, durable storage on 
immediate recall tasks, and durable storage on delayed recall tasks, respectively. In contrast to 
purely observed behaviors (e.g., the number of words recalled), this generalized probability of 
recall, which includes the combination of encoding and retrieval processes that result in success-
ful recall across WLM test tasks, is constructed from base DCBs subsequent to modeling.  

This method document provides an overview of DCB generation. Accompanying this document 
is a datafile, ADASDCB.csv, containing all DCBs calculated for each ADAS-Cog WML assess-
ment for 2,258 subjects (10,398 assessments) assessed under ADNI1, ADNI-GO, ADNI2, and 
ADNI3, date ranging from 5/17/2005 to 11/1/2021. 

Background 
Wordlist memory (WLM) tests are the most common measures of verbal episodic memory used 
in clinical and research settings [1,2]. Their total scores as observed behaviors are frequently 
used to screen individuals prior to neuroimaging or other assessments for cognitive impairment 
or dementia stages of Alzheimer’s disease (AD) and to monitor progressive decline and treat-
ment effects [3]. However, as AD research shifts its focus toward earlier or even asymptomatic 
or preclinical stages of the disease, the change at those stages may be very subtle and difficult to 



 
 

   

measure [4] and require more sophisticated approaches to maximize the information collected 
through WLM tests and achieve the greatest precision of measurements [5].  
 
One such approach is the application of a hierarchical Bayesian cognitive processing (HBCP) 
model to item response data from commonly used WLM tests of learning, recall, and recogni-
tion. This approach not only improves the use of information collected through WLM tests, but 
also enables characterization of more subtle but distinct cognitive changes at the unobservable 
processing level that are not quantifiable using observed behaviors. 
 

Developing the Hierarchical Bayesian Cognitive Processing Model for Gener-
ation of Digital Cognitive Biomarkers 

Generating Digital Cognitive Biomarkers 

To generate DCBs, an HBCP model is applied to item response data from commonly used WLM 
tests (e.g., ADAS-Cog, AVLT, CVLT, EVLT, and CERAD) with two or more immediate learn-
ing and recall tasks and at least one delayed recall task [6]. The model generates seven base 
DCBs, each representing the probability of information processed through different encoding 
(N1, N2, N3, or N4) or retrieval (R1, R2, or R3) pathways, to and from three distinct storage states 
(pre-task, transient, or durable storage states). Figure 1 is a graphical representation of how 
items on the WLM test move among storage states via the encoding DCBs and how they are re-
called from them via the retrieval DCBs, across the tasks of the test. When data from a delayed 
recognition task is available, the model incorporates it for additional precision. Normative, prior 
information is provided to the model from evaluation of a large dataset of subjects, which were 
sampled from a database of nearly 2,000,000 individuals in the general population without diag-
nosis of cognitive impairment. 

 

Figure 1. Hierarchical Bayesian Cognitive Processing Model. The model has three episodic memory storage states 
(P, T, and D), four processes of encoding into them (N1, N2, N3, and N4), and three processes of retrieval from them 

(R1, R2, and R3). 
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Since the DCBs are generated by modeling latent processes which are used in every WLM test, 
the DCBs themselves represent absolute measures that can be compared across different WLM 
tests. However, it is important to note that a modified HBCP model is required for generating 
DCBs on WLM tests that shuffle the order of the word presentation following each recall trial or 
WLM tests that use multiple, non-equivalent wordlists. This is because each feature of WLM 
tests (e.g., word presentation, wordlists, the number of words) affects recall performance and 
those features need to be taken into consideration when generating the DCBs. More details on 
the different WLM test features and the importance of matching analytical method to those avail-
able features are discussed elsewhere [7].  

HBCP Model Development 

The HBCP model was developed from and expanded upon a multinomial processing tree (MPT) 
model, the Batchelder model [8], which calculates the probability for each possible pattern of re-
call across WLM test tasks for each presented word. These patterns are represented as binary tu-
ples of 0s, for non-recall, and 1s, for recall. In a WLM test with four tasks (e.g., ADAS-Cog, 
EVLT), a word has one of 16 tuples: 0000, 0001, ..., 1111. The model-calculated probability that 
a word exhibits one of these recall patterns is derived from the DCBs, which are generated 
through Bayesian inference to accurately do so. For example, for the pattern 0000, indicating that 
an item was never recalled on any task, the probability is: 
 
θ0000 = 
N1(1 − R2)(1 − R2)(1 − R2)(1 − R3) + 
(1 − N1)N2(1 − R1)N3(1 − R2)(1 − R2)(1 − R3) + 
(1 − N1)(1 − N2)N1(1 − R2)(1 − R2)(1 − R3) + 
(1 − N1)N2(1 − R1)(1 − N3)(1 − R1)N3(1 − R2)(1 − R3) + 
(1 − N1)(1 − N2)(1 − N1)N2(1 − R1)N3(1 − R2)(1 − R3) + 
(1 − N1)(1 − N2)(1 − N1)(1 − N2)N1(1 − R2)(1 − R3) + 
(1 − N1 )N2(1 − R1)(1 − N3)(1 − R1)(1 − N3)(1 − R1) + 
(1 − N1)(1 − N2)(1 − N1)N2(1 − R1)(1 − N3)(1 − R1) + 
(1 − N1)(1 − N2)(1 − N1)(1 − N2)(1 − N1)N2(1 − R1) + 
(1 − N1)(1 − N2)(1 − N1)(1 − N2)(1 − N1)(1 − N2). 
 
The above equation shows that the probability of patterns of recall are the sums of more basic 
probabilities that correspond to specific ways in which the pattern could arise. If the item is 
never recalled because it was never encoded (remains in pre-task storage), the probability of this 
happening is (1 − N1)(1 − N2)(1 − N1)(1 − N2)(1 − N1)(1 − N2). The item may also never be re-
called because, while it was encoded into durable storage, it was never retrieved: N1(1 − R2)(1 − 
R2)(1 − R2)(1 − R3). Other rows in the equation correspond to other possible paths through the 
MPT that result in this pattern, and other patterns are constructed similarly [6]. 
 



 
 

   

The seven base DCBs that generate the response patterns through the Batchelder MPT are esti-
mated through Bayesian inference with a Markov-chain Monte Carlo (MCMC) algorithm. Gen-
eration of DCBs for ADNI was done with the JAGS software program [9] and used 1,000 sam-
ples each from 8 independent MCMC chains evaluated for convergence with the Ȓ statistic. 

Consideration of Wordlist Presentation Orders (Shuffled vs. Fixed)  
Some WML tests employ a shuffled wordlist presentation (e.g., ADAS-Cog), whereby each 
word in the list is presented in a different position during each of the three learning tasks. Since 
shuffling the word presentation order eliminates the accumulative serial position effects of pri-
macy and recency on encoding (which is a loss of available information), generating DCBs for 
this test protocol requires modeling the item-level responses with a distinct approach compared 
to that used for fixed-order tests. The modified HBCP model accounts for irregular differences in 
encoding and retrieval strength for various items in various positions across the wordlist.  

Additional Consideration for Multiple Non-Equivalent Wordlists 
Additionally, the ADAS-Cog WLM test in the Alzheimer's Disease Neuroimaging Initiative 
(ADNI) uses three different wordlists across different visits. Because individual item responses 
are used as the input for generating DCBs, the features of those items (e.g., word concreteness, 
valence, or semantic distance to other words) impact DCB values. As a result, multiple, non-
equivalent wordlists can only be evaluated together after applying a normative adjustment for 
each word and DCB. To accommodate for differences across the ADAS-Cog wordlists used in 
ADNI, a normative adjustment was developed and applied to the three ADAS-Cog English 
wordlists. Three separate models were run to obtain this normative adjustment, one on each of 
the three wordlists, using only the first assessment on which a subject received a given wordlist 
(assessment n's = 2,286; 1,537; 673). These models inferred individual assessment DCBs in iso-
lation and inferred per-DCB and -position penalties, which were applied to all assessments in the 
model, that account for the interactions between words on the wordlist, the positions they are 
presented in, and the DCBs used to encode and retrieve them. For example, the words in position 
2 for wordlist 1 are ARM, LETTER, LETTER, and N1 for this position is little penalized (-0.003); 
the words in the same position 2 for wordlist 2 are POTATO, TEMPLE, TEMPLE, and N1 for this 
position is more strongly penalized (-0.418) to account for the different features of the words. 
This same penalty may now be applied to any assessment with that same ADAS-Cog wordlist 
entirely independently to adjust for word features. 

Generalizability Across Different WML Tests 
To evaluate the generalizability of DCBs across different WLM tests, values were generated us-
ing item response data from 2,456 subjects who were assessed with three different WLM tests 
(i.e., ADAS-Cog, EVLT, or AVLT) and who had diagnoses of cognitive normalcy (CN), amnes-
tic mild cognitive impairment (aMCI), or dementia due to Alzheimer’s disease (AD) [10]. The 
values and the changes in DCBs from CN to AD were consistent across the three different WLM 
tests and data sources (Figure 2). The results demonstrate that these DCBs are robust and gener-
alizable, regardless of the underlying test protocol, and allow comparison of various studies con-
ducted using different WLM tests. 



 
 

   

 
Figure 2. Distributions of DCBs by Disease Severity (CN, MCI, and AD dementia) and by Wordlist Memory Test 
(ADAS-Cog, EVLT, and AVLT). Across all three tests, highly similar values and slopes are observed for the distri-

bution means of each group, providing strong evidence of DCB generalizability. 
 
Relation to Functional Decline 
To evaluate the DCBs against functional decline, DCBs were compared against the Functional 
Assessment Staging Test (FAST) for each of 14,096 EVLT test assessments from 3,635 patients 
at a cognitive disorders clinic. The results demonstrated characterization of functional decline 
from stage to stage across all DCBs (Figure 3), with noteworthy patterns of greater N2 decline 
for words in primacy positions than in recency positions and a dramatic R3 drop between stages 3 
(MCI) and 4 (mild dementia) [6].  
 



 
 

   

 
Figure 3. DCB means and 95% Credible Intervals by Each of the 10-word List in the EVLT and by FAST stage. 

Distinctive patterns of decline can be observed from less to more severe stages, including a faster decline for encod-
ing words at the beginning of the list (primacy) than at the end of the list (recency). Of particular note is the pattern 

of decline for R3. There is preserved delayed retrieval for list-beginning words through MCI (with declining retrieval 
for list-ending words) and a sharp drop in retrieval ability upon progression to mild dementia. 

 

Generating Digital Cognitive Biomarkers for ADNI ADAS-Cog 

ADNI ADAS-Cog Dataset 
The dataset used for generation of DCBs for ADNI was downloaded on 11/2/2021 and includes 
assessments from ADNI1, ADNIGO, ADNI2, and ADNI3, ranging in date from 5/17/2005 to 
11/1/2021.  Assessments (n = 10,398 from 2,258 subjects) were included if there was no missing 
data for any of the following factors: item responses from the ADAS-Cog Word Recall test (im-
mediate and delayed), specified ADAS-Cog Word Recall test wordlist, age, sex, and years of ed-
ucation. The sample was 47% female (n = 1,069), with a mean age at baseline of 73.05 years (SD 
= 7.27) and a mean education of 16.11 years (SD = 2.71). Diagnoses at baseline were 36% cogni-
tively normal (n = 819), 45% mild cognitive impairment (n = 1,021), and 17% Alzheimer's de-
mentia (n = 388). 

Generating DCBs for ADNI ADAS-Cog Dataset 
The HBCP model, including adjustment for word presentation position effects on each of the 
three ADAS-Cog English wordlists, was applied to all subject assessments independently of one 
another. Using Bayesian inference to include prior information of DCB distributions for a typical 
individual in the general population, the HBCP model updated the ADNI individual assessment 
DCBs according to ADAS-Cog WLM test performance. This results in DCBs that are informa-
tive regarding the probability of a subject's use of specific, latent cognitive processes, calculated 
from a single WLM test. 
 



 
 

   

For ADNI ADAS-Cog, 7 base DCBs and 3 additional M measures were calculated (Table 1) for 
the ADNI database depository. 
 
Table 1. Available Digital Cognitive Biomarkers for ADNI ADAS-Cog 

DCBs Correlate Description 

N1 Encoding Probability of encoding into the DURABLY LEARNED State 

N2 Encoding Probability of encoding into the TRANSIENTLY LEARNED State 

N3 Encoding Probability of encoding into the DURABLY LEARNED State, following previous 
TRANSIENT LEARNING (N2) 

N4 Encoding Probability of encoding into the DURABLY LEARNED State, due to successful retrieval 
(R1) from the TRANSIENTLY LEARNED State 

R1 Retrieval Probability of retrieving from the TRANSIENTLY LEARNED State 

R2 Retrieval Probability of retrieving from the DURABLY LEARNED State 

R3 Retrieval Probability of retrieving from the DURABLY LEARNED State after a 5-minute delay 
with distraction 

M1 Recall Probability of immediate recall of a non-durably stored episodic memory 

M2 Recall Probability of immediate recall of a durably stored episodic memory 

M3 Recall Probability of delayed recall of a durably stored episodic memory 

 

Evaluating ADNI ADAS-Cog DCBs 
Relation to Disease Progression (Clinical Diagnosis)  
To evaluate the DCBs against different disease stages, DCBs generated for each of 10,398 
ADAS-Cog WLM tests from 2,258 subjects enrolled in the ADNI were compared against clini-
cal diagnoses (CN, MCI, and AD) (Figure 2). After accounting for varying degrees of item ef-
fects in the shuffled-order test, the results show the expected decline from CN to MCI to AD 
across subject assessments for many of the DCBs. The M measures of generalized recall proba-
bility, summated from the DCBs, show yet more pronounced decline across clinical diagnoses.  
 



 
 

   

 
Figure 2. Distributions of DCBs (N1 through R3) and Behavioral Outcomes (M1, M2, and M3) by Disease Severity 

(CN, MCI, and AD). Decline in many DCBs can be observed with increasing severity. 
 

Relation to Observed Behavior and Clinical Outcomes 
To evaluate the relationship between generalized recall probability of DCBs and the observed 
recall behavior, M measures (M1, M2, and M3) generated from ADNI ADAS-Cog WLM DBCs 
were visually compared to total word recall for each immediate and delayed recall task and all 
tasks combined. Visual comparison of M parameters and total word recall showed a clear curvi-
linear relationship (Figure 3).  
 

  

 

Figure 3. Box Plots of M Measures (x-axis) by Total 
Score (y-axis) on ADAS-Cog Recall Tasks. All three 
generalized measures of recall, through transient or du-
rable storage and on immediate or delayed tasks, 
closely correspond to observed behavior. 

 



 
 

   

To demonstrate the capability for classification of cognitive impairment with the M measures, 
these measures were included as predictors, along with demographics, in a Bayesian logistic re-
gression model to classify MCI (against CN as the reference) with a sample of 7,445 assess-
ments, age ≥ 65, from ADNI. The β coefficients of M2 and M3 showed extreme evidence for dif-
ference from the uninformed prior distribution centered on 0 (BFs > 1,000), with means = -6.99 
(SD = 0.71) and -6.47 (SD = 0.48), respectively. The M1 β coefficient distribution demonstrated 
strong evidence in favor of the uninformed prior distribution centered on 0 (BF = 24.7), with 
mean = -1.34 (SD = 0.67). Higher Ms corresponded with reduced likelihood for MCI. A receiver 
operating characteristic (ROC) curve was generated with the model’s predicted probability 
against observed severity (AUC = .79). A model with demographics only was analyzed with the 
same approach (AUC = .61) for comparison of data. Additionally, both models were analyzed 
with frequentist logistic regressions for comparison of methods, and both models and all predic-
tors were significant (ps < .05), with pseudo R2 = .20 and .03, respectively. A likelihood-ratio 
test found significantly greater prediction of the data under the model with M parameters than 
with demographics only, χ2(3) = 1818.25, p < .001. 
 

 
 

Figure 4. Left: Receiver Operating characteristic (ROC) curves, generated from logistic regression predicted proba-
bility of MCI (CN reference) with M measures (blue) and with demographics only (red). Right: Classification char-

acteristics by cutoff value of M measures model predicted probability. 
 
	  



 
 

   

Dataset Information 
This methods document applies to the following dataset(s) available from the ADNI repository: 
 
Dataset Name Date Submitted 
ADASDCB.csv July 27, 2022 
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