少量学習によるフィードフォワード型のAI空調制御により、省エネと快適環境の両立を実証~短期間データでも快適性予測を可能とし、JR新宿ミライナタワーの実環境での有効性を実証~
日本電信電話株式会社(東京都千代田区、代表取締役社長:澤田純、以下「NTT」)、東日本旅客鉄道株式会社(東京都渋谷区、代表取締役社長:深澤祐二、以下「JR東日本」)、株式会社NTTファシリティーズ(東京都港区、代表取締役社長:松原和彦、以下「NTTファシリティーズ」)、株式会社NTTデータ(東京都江東区、代表取締役社長:本間洋、以下「NTTデータ」)は、NTTが開発した「空調最適制御シナリオ算出技術」を、JR新宿ミライナタワーのオフィスロビーへ適用する共同実証を行いました。その結果、夏季におけるオフィスロビーの快適性を維持しつつ、消費エネルギー量を約50 %削減できることを実証しました。本成果は、NTTの環境エネルギービジョン 「NTT Green Innovation toward 2040」※1 およびJR東日本グループの環境長期目標「ゼロカーボン・チャレンジ 2050」※2に基づき、両グループが共にめざすカーボンニュートラルの実現へ大きく貢献することが期待されます。 |
1. 背景・経緯
これまで商業ビルやオフィスビルといった大規模ビルにおける、通路やロビー、ラウンジなどの共用部の空調制御は、センサーからの信号に基づく制御(フィードバック型制御)や、ビル管理者の経験に基づいた制御が行われてきました。しかしながら、カーボンニュートラル社会実現の機運が高まる中、従来の技術では、空調の制御が室内環境に影響を及ぼすまでの時間遅れを考慮することが難しく、また、時間遅れを考慮するためには温湿度や人流といったデータを長期間計測し、分析する必要があるため、実際のビルにおいて、消費エネルギーを抑えつつ来館者や入居テナントにとって快適な環境を実現することは困難でした。
そこで、ICT技術による2040年度までのカーボンニュートラル実現をめざすNTTグループと、多くのビルを所有し、ESG経営の実現とビルの魅力向上に向けて取り組むJR東日本グループは、ビルにおける魅力向上と消費エネルギー最適化の両立に向けた実証実験を共同で実施してきました。特に、ビルの消費エネルギーの約50 %を占め、かつ来館者や入居テナントの快適性に深くかかわる空調機の運転最適化を共同で検討してきました。
2. 実証実験の概要と結果
本実験では、NTTの開発した「空調最適制御シナリオ算出技術」を、夏季の JR新宿ミライナタワーにおけるオフィスロビーの空調運転へ適用しました。この技術は、人・モノ・環境の状態再現と未来予測により 都市における新たな価値創造を目指した「街づくりDTCTM※3」の取り組みの一環として、NTTスマートデータサイエンスセンタで開発した技術です。 なお、この技術には、移動体を含む地理空間の位置情報基盤である 「4Dデジタル基盤®※4」を用いています。本実験での各社の役割分担を表1に、開発した技術の概要を図1に示します。
本技術では、以下の処理に基づき、最適な空調運転シナリオを算出しています。特に、コンピューター流体力学と機械学習の組み合わせによって、短期間での計測による少量データからの快適性予測を実現している点と、深層強化学習※5を用いることにより、ビル内の広い共用空間において生じる、空調が室内環境に影響を及ぼすまでの時間遅れも考慮したフィードフォワード制御を行う点が特長です。
●来館者の数、外気温、空調運転状況、室内の温湿度を用いて、機械学習技術とコンピューター流体力学を組み合わせることで、快適性指標であるPMV※6を少量の計測データより予測
●予測されたPMVを基に最適な空調運転設定を算出するという処理を1日分繰り返し実施しながら最適化する深層強化学習を用いて、対象日における最適な空調運転シナリオを算出
上記によって算出された空調運転シナリオを適用したところ、PMVを快適な範囲内に保ちつつ、空調機が用いる消費エネルギー量(冷水熱量)を、従来の同気候日における空調運転時と比較し、約50 %削減できることを確認しました。この結果は、深層強化学習を用いた空調最適制御シナリオ算出技術が、実際のビルにおける空調の最適化に役立つことを実証した重要な成果です。
なお本成果は、11/16より開催されるNTT R&Dフォーラム※7へ出展されます。
3. 本成果の特長
●来館者数、外気温、空調運転からの快適性(PMV)予測と、快適性と消費エネルギー量を考慮した空調運転シナリオの算出を組み合わせた深層強化学習による「空調最適制御シナリオ算出技術」により、空調により最適環境に制御されるまでの時間遅れも考慮したフィードフォワード制御による空調最適化を実現
●従来は2ヶ月以上の測定データを要した室内快適性の予測に、コンピューター流体力学と機械学習を組み合わせることで、最短3日間の測定データのみから快適性を高精度に予測可能とし、実際のビルへの導入を短期間で実現
●JR新宿ミライナタワーのオフィスロビーにおいて実際に本技術を適用した結果、快適性を保ちつつ、従来制御と比較して消費エネルギー量をや約50 %削減できることを実証(図2、図3)
4. 今後の展開
今後、NTTグループとJR東日本グループは、本成果の導入拡大を共同で推進し、ビルの魅力向上と共に消費エネルギー量削減を実現していきます。あわせて、NTTデータおよびNTTファシリティーズにて、本サービスの実用化の検討を進めて参ります。さらに、NTTグループとJR東日本グループは、それぞれのカーボンニュートラル実現に向けた取り組みを行い、日本政府がめざす2030年に2013年度比で温室効果ガスを46%削減するという目標、および「2050年カーボンニュートラル宣言」の実現に貢献していきます。
用語解説
※1 NTTグループでは2021年9月28 日に環境ビジョン「NTT Green Innovation toward 2040」を策定し、2030年度までに温室効果ガス排出量の80%削減(モバイル、データセンターはカーボンニュートラル)、2040年度までにカーボンニュートラルを実現することをめざしています。また、NTTグループでは、自らのカーボンニュートラル実現に向けた取り組みを社会へ拡大し、日本政府がめざす2030年に2013年度比で温室効果ガスを46%削減するという目標、および2050年までのカーボンニュートラルの実現に貢献します。
https://group.ntt/jp/newsrelease/2021/09/28/210928a.html
※2 「ゼロカーボン・チャレンジ 2050」とは、JR 東日本が将来にわたり環境優位性を向上し、社会に新たな価値を創造する企業グループであり続けるために策定した環境長期目標です。
https://www.jreast.co.jp/press/2020/20200512_ho02.pdf
※3 NTT、NTTアーバンソリューションズ 2021年2月2日
「未来の街づくり」を実現するNTTグループのデジタル基盤「街づくりDTC™」の 技術開発、実証実験の開始について
https://www.ntt-us.com/news/2021/02/news-210202-01.html
※4 4Dデジタル基盤®とは、ヒト・モノ・コトのさまざまなセンシングデータをリアルタイムに収集し、「緯度・経度・高度・時刻」の4次元の情報を高い精度で一致・統合させ、多様な産業基盤とのデータ融合や未来予測を可能とする基盤です。NTTのIOWN構想における「デジタルツインコンピューティング(DTC)」を支える基盤として、NTT研究所の技術とNTTグループのノウハウ・アセットを活用し、2021年度からの機能の順次実用化と、継続した研究開発による機能拡充を目指します。
詳細については、以下のサイトをご覧ください。
https://www.rd.ntt/4ddpf/
※5 深層強化学習: 人間の神経細胞の仕組みを再現したニューラルネットワークを用いた機械学習の一手法であり、ある環境に対する試行錯誤を通じて最適解を学習することが特徴です。
※6 PMV(Predicted Mean Vote): 人の熱的快適性を数値化した指標。温度、湿度、放射温度、風速、対象者の運動量および着衣量から算出され、0が快適で、暑いと正、寒いと負の値となります。PMVが±1の範囲内であれば75%の人が快適と感じる環境とされています。
※7 本成果を出展します11/16より開催のNTT R&Dフォーラムの詳細については、以下のサイトをご覧ください。
http://www.rd.ntt/forum/
このプレスリリースには、メディア関係者向けの情報があります
メディアユーザー登録を行うと、企業担当者の連絡先や、イベント・記者会見の情報など様々な特記情報を閲覧できます。※内容はプレスリリースにより異なります。
すべての画像