光触媒式太陽電池の実用化に前進 性能向上の鍵を特定
千葉大学大学院融合理工学府博士前期課程2年の漆舘 和樹 氏と同理学研究院の泉 康雄 教授、同工学研究院の小島 隆 准教授らの共同研究グループは、光触媒(※1)を両極に用いる高電圧型太陽電池の性能を向上させる鍵が光触媒結晶の分極率と触媒活性にあることを明らかにしました。これまでに同研究グループの光触媒式太陽電池は、単セル(※2)で2.11 Vという他の太陽電池や燃料電池では類例を見ない起電力を記録しており、これらの成果を組み合わせて発電することで、屋外に設置でき、より環境負荷の少ないバックアップ用電源としての応用が期待されます。本研究成果は2020年1月27日に米国化学会刊行「ACS Sustainable Chemistry & Engineering」第8巻第3号に掲載され、この号の表紙を飾りました(図1)。
(図1:両側(黄緑色)の光電極上を薄い光触媒膜で覆った高電圧型太陽電池を示しており(中央)、負極(右側)上の酸化チタン結晶が交流/直流印加時に分極しやすいほど、また水を酸素へ触媒変換しやすいほど、電池の起電力および出力が向上することを解明しました。正極(左側)上のオキシ塩化ビスマス結晶は酸素を水に戻す働きがあります。)
- 研究の背景
- 研究の成果
本研究では、光触媒式太陽電池の性能を向上させる因子を特定するために、光触媒結晶の形状や薄膜形成法に着目しました。光触媒には酸化チタン結晶(TiO2)を用いて、 負極上に種々の形状(紡錘状、立方体状、菱形状)およびサイズを制御して合成した触媒結晶を配置しました。また、薄膜形成法も制御して複数の方法(キャスト法、スライド法、粉砕&スライド法、粉砕&機械成膜法)を調べました。さらに、形成した膜のかさ密度を電子顕微鏡を使って計測し、紫外可視蛍光発光、交流および直流(AC/DC)印加時の膜インピーダンス、18O2(※18は上付き)ガスとTiO2膜表面の酸素原子との交換反応速度を測定し、図1のように組んだ太陽電池の発電特性を比較検討しました。
その結果、サイズを揃えて合成した立方体状、菱形状TiO2はいずれも、電子の通しやすさを示す分極率が低いため、電子を通しにくいことが分かりました(図2右上)。一方、サイズが不揃いのTiO2あるいは紡錘状に合成したTiO2は分極率が高く、かつ光酸化反応の起こりやすさ(触媒活性)を示す酸素解離反応が遅い(図2下のΔE2がΔE1より大きい)ため、太陽電池の出力を85.2 μW平方センチメートル、起電力を1.94Vまで高めることに成功しました。
同研究グループでは、これまでにTiO2に有機色素を添加することで起電力を2.11 Vまで高めることにも成功しています(2018年出版 論文2)。光触媒式太陽電池では、光触媒が紫外光を吸収するのと、有機色素が可視光を吸収する電子エネルギーの変化がつながって起きるため、他の太陽電池と異なり起電力が高くなっています。
- 今後の展望
- 用語解説
(※2)セル:電池を構成する基本単位。複数のセルを配列し、パッケージ化したものをモジュールという。
(※3)太陽電池:光を吸収することで物質内の電子エネルギーが変化することを利用して電力を得るデバイスの総称で、シリコン太陽電池・色素増感太陽電池・ペロブスカイト太陽電池・有機膜太陽電池等が研究開発されている。
(※4)燃料電池:水素やアルコールが燃焼する際の化学エネルギーを利用して電力を得るデバイスの総称で、固体高分子形燃料電池・リン酸形燃料電池・固体酸化物形燃料電池・バイオ燃料電池等が研究開発されている。
(※5)光触媒式太陽電池:両方の電極上に光触媒を載せた太陽電池で、両方の物質内の電子エネルギーが変化する前後のエネルギーを電力として得るデバイス。光触媒は光照射で電子エネルギーが約3V変化するので、理論上3Vを電力として得られる。
- 研究プロジェクトについて
- 論文情報
雑誌名:ACS Sustainable Chemistry & Engineering
DOI: https://doi.org/10.1021/acssuschemeng.9b05576
(2)論文タイトル:Solar Cell with Photocatalyst Layers on Both the Anode and Cathode Providing an Electromotive Force of Two Volts per Cell
雑誌名:ACS Sustainable Chemistry & Engineering
DOI: https://doi.org/10.1021/acssuschemeng.8b02166
このプレスリリースには、メディア関係者向けの情報があります
メディアユーザーログイン既に登録済みの方はこちら
メディアユーザー登録を行うと、企業担当者の連絡先や、イベント・記者会見の情報など様々な特記情報を閲覧できます。※内容はプレスリリースにより異なります。
すべての画像