白物家電やヘルスケア製品・産業用機器などあらゆる組込に対応可能なCortex-Mシリーズ向けエッジ時系列処理AIソリューション「EdgeQore Lite」の提供を開始

バッテリー駆動など低消費電力が求められる製品向けに、マイコン上で学習・推論が可能なAI機能を実現

株式会社QuantumCore

再帰型ニューラルネットワーク(Recurrent Neural Network:以下「RNN」)の一種であるレザバーコンピューティング(Reservoir Computing)を活用し、ディープラーニングの性能を超える多変量時系列処理ソリューションの開発に成功した株式会社QuantumCore(クアンタムコア、本社:東京都品川区、代表取締役:秋吉信吾、以下「当社」)が、同社が展開する「Qoreシリーズ」にCortex社のマイコンMシリーズ向けのラインナップを追加しました。
当社独自の技術により、高い精度を維持したまま、わずか100kb以下のマイコンでの動作を実現、学習から推論までのフル機能を「Cortex-Mシリーズ」内で全て完結させることで、業界で初めて組込マイコンを使ったエッジ上での完全なRNN処理を実現しました。
当社はレザバーコンピューティングを基にした「少量データ」を「エッジ上」で「リアルタイム学習」できる多変量時系列処理ソリューション「Qoreシリーズ」を提供しています。
この「Qoreシリーズ」にはWebAPIで提供する「WebQore」の他、RaspberryPi上で動作する「EdgeQore」、そして今回ラインナップに追加された低消費電力マイコン(Cortex Mシリーズ)上で動作する「EdgeQoreLite」の3つがあり、いずれもエッジ上で学習から推論まで可能な製品となっております。


動作要件は下記のようになります。

 

製品名 WebQore EdgeQore EdgeQore Lite
対応システム

HTTPS通信可能なデバイス

RaspberryPi 3B/B+/4B Cortex-M3/4/7
要求RAM 問わず 100MB 80-100KB
機能 学習/推論 学習/推論 学習/推論
提供形態 WebAPI ライブラリ/モジュール ライブラリ/モジュール
想定用途

通信機能を持つ5G端末など

複数システムが共存する製品 低消費電力が求められる小型製品など
料金体系 従量課金 お問い合わせ下さい お問い合わせ下さい

今回追加されたラインナップにより「Qoreシリーズ」がカバーできる範囲は更に広がり、より幅広いユーザ様の製品に組込いただけるようになりました。

また弊社では時系列処理の一例として、音声のみから話者を特定する「音声話者推定」をCortex-M4を搭載したCypress社のPSoC6にて動作させるデモを公開しております。

 


【レザバーコンピューティングとは】
レザバーコンピューティングとは、レーザーの波長や波動く水面など、ダイナミクス(ノイズソース)を持つさまざまな物質を利用したコンピューティングのことで、これを活用したリカレントニューラルネットワーク(Recurrent Neural Network:RNN)が、最近新たな機械学習方式として注目されています。入力層、中間層(レザバー層)、出力層(リードアウトニューロン層)の3層で構成される教師あり学習となります。
この方式では、ディープラーニングと違い、中間層を溜め池(Reservoir:レザバー)にして計算を回すことで特徴抽出を行います。そのためディープラーニングで必要だった特徴抽出機能を学習により強化する必要がなく、学習時の中間層の重み更新が不要となる特徴を有しており、学習時の計算に必要なデータ量や計算力を著しく節約することができます。
なお、溜め池にはダイナミクス(ノイズソース)を持つものであれば様々なものが利用でき、現在はロボットやタコの身体をノイズソースとして計算する仕組みが探求されています。このように狭い意味では人工の神経回路を使って様々なノイズソースを用意し、そこから適宜情報を取り出して加算し計算する新しい人工の脳型コンピュータです。

【QuautumCoreのテクノロジーについて】
レザバーコンピューティングの特長は上述の通りですが、ディープラーニングに比べて精度を出しにくいという課題を有しておりました。その技術的な課題を当社独自の技術(国際特許出願中)で解消することに成功、ディープラーニング(Long short-term memory:LSTM)の性能を圧倒的に超える精度、コスト、スピードを実現する多変量時系列処理(Recurrent Neural Network:RNN)ソリューションQore(コア)シリーズの開発に成功しております。
Qoreの特長は「データ波形を効率的に捉えることで、少ないデータ量でLSTMを超える分類ができる」ことにあり、個体差、環境差、時間差等の影響が大きい領域(=ルールベースの推論モデルが通用しにくい領域)において、特に力を発揮します。
例えば異常検知等においては、推論モデルを構築するためにデータを採取してみたものの、正常データこそ大量に得られるが異常データをほとんど得ることができず、LSTMではそこから有効な異常検知の推論モデルを確立することが難しいといった問題が考えられます。そのようなケースにおいてもQoreを活用することで少ない異常データから有効な推論モデルをリアルタイムに導くことができます。しかも、従来ディープラーニングで問題であった複雑なパラメータチューニングもQoreでは不要です。

【QuantumCoreについて】
弊社にはレザバーコンピューティングの研究で著名な、東京大学の池上 高志教授と、はこだて未来大学の香取 勇一准教授がリサーチアドバイザとして参加しております。
また主力製品として、レザバーコンピューティングを基にした、「少量データ」を「エッジ上」で「リアルタイム学習」できる多変量時系列処理ソリューション「Qore」を提供しています。ビックデータによる作りきりのモデルではなく、個人や環境へ柔軟に対応し、人に寄り添う技術の提供を実現させます。

 


【お問い合わせ】
お問い合わせは、以下フォームからへお願いいたします。
https://docs.google.com/forms/d/e/1FAIpQLSdnUZw1sd6i9G51so8OLCbIoyLNiECZPXQhfvBvch98Zmx0Eg/viewform

 

このプレスリリースには、メディア関係者向けの情報があります

メディアユーザー登録を行うと、企業担当者の連絡先や、イベント・記者会見の情報など様々な特記情報を閲覧できます。※内容はプレスリリースにより異なります。

すべての画像


会社概要

株式会社QuantumCore

11フォロワー

RSS
URL
https://www.qcore.co.jp
業種
サービス業
本社所在地
東京都品川区西五反田2-14-13
電話番号
-
代表者名
秋吉 信吾
上場
未上場
資本金
-
設立
2018年04月