プレスリリース・ニュースリリース配信サービスのPR TIMES
  • Top
  • テクノロジー
  • モバイル
  • アプリ
  • エンタメ
  • ビューティー
  • ファッション
  • ライフスタイル
  • ビジネス
  • グルメ
  • スポーツ

PR TIMESのご利用について

資料をダウンロード

株式会社Laboro.AI
会社概要

線路設備の異常を自動判定する「線路設備不良判定AI」を開発・実運用化

株式会社Laboro.AI

 株式会社日本線路技術(東京都足立区、代表取締役社長 原田彰久。以下、日本線路技術)と株式会社Laboro.AI(ラボロエーアイ、東京都中央区、代表取締役CEO椎橋徹夫・代表取締役COO兼CTO藤原弘将。以下、Laboro.AI)は、線路設備の機能不全や異常を自動判定する「線路設備不良判定AI」を開発いたしました。なお、この「線路設備不良判定AI」は2023年11月より実運用し、現在も運用を継続しております。
  • 背景:開発の経緯 

 日本線路技術では、安心かつ快適な鉄道輸送の実現に向け、線路設備の検査・調査や保守点検など保全管理サービスを展開しております。また、その検査の多くは目視による確認が必要であり、膨大な人手と労力を要する一方、鉄道業界は社員減少に直面しており、検査方法の効率化と体制構築が急務となっておりました。

 こうしたことから日本線路技術では、線路保全業務のアナログからデジタルへの変革を進めることを目指し、「線路DX」のコンセプトを掲げ、先端テクノロジーの活用を積極的に推進してきました。その一つとして導入されたのが、営業車両の床下に搭載された検査装置(カメラ)で線路設備を撮影し、その画像から補修の必要性を判断する「線路設備モニタリング装置」です。日本線路技術では、「線路設備モニタリング」の装置管理、データ処理を担っており、データ処理延長は約6600kmと、広範囲でのサービス展開を実施しています。

 「線路設備モニタリング装置」は、検査員の現地での調査頻度を減らすことには貢献した一方、撮影画像の確認・判定を目視で実施する必要があり、チェックにかかる時間・労力削減が課題となります。また、撮影された大量の画像に対して更なる活用が求められることから、線路設備の保全における更なる省力化・精度向上のために「線路不良判定AI」の開発に至りました。


  • 開発内容と効果:不良判定の自動化による工数削減 

 安全かつ快適な鉄道輸送を実現するために行われる線路の保全管理は、①検査実施、②不良判定、③修繕計画作成、④修繕実施というサイクルで通常行われます。今般開発した「線路設備不良判定AI」は、このサイクルのうち②不良判定の自動化を目指したものであり、その運用としては、まず画像から明らかにわかる不良をAIでスクリーニング判定し、そこから除外される判断の難しいケースのみを人が目視で最終判定することとしております。これにより、全画像を目視によって判定していた従来と比べ、1ヶ月あたり100時間(※1)の工数削減を見込んでおります。

「線路設備不良判定AI」導入前後の運用フロー


 今回新たに開発した「線路設備不良判定AI」は、簡単には物体検出技術と異常検知技術を組み合わせることで不良判定を実現していますが、検出すべき部材のカテゴリーには、ボルト、マクラギ、締結装置、軌道パッドなど複数あるだけでなく、それら部材は環境や用途によって構造や素材の異なるものが用いられることに加え、検出すべき異常のパターンや判定基準がそれぞれ異なります。

 また線路設備は、類似の部材が多いだけでなく、例えばボルトであれば、脱落、緩み、破損など、部材ごとに複数の不良パターンがあることから、さらに難易度の高い異常検知を実現する必要があります。このような複雑な現場要件に適用させるため、「線路設備不良判定AI」では、十数種類の部材の不良を判定することを可能にしており、一部の部材においては8割以上のスクリーニング効果が得られております。

 こうした高度なAIの開発を実現するにあたっては、過去に収集されたデータの量・質の状況や判定基準などに応じて、教師あり学習/教師なし学習といった学習手法や様々なAIモデルから適した技術を調査・選択することを通して、それぞれのケースでの判定を実現するに至っています。

「線路設備不良判定AI」の判定フロー


(※1)JR東日本が開発したAIの効果を含む

  • 今後の展望 

 日本線路技術およびLaboro.AIでは今後、「線路設備不良判定AI」の精度向上のための取り組みを継続して行っていく予定であり、より安全かつ快適な鉄道輸送の実現に貢献してまいります。合わせて、線路保全管理の現場におけるより一層の効率化・精度向上を目的に、ML Ops(Machine Learning Operations:機械学習運用基盤)を見据えた体制構築を目指すなど、開発面のみならず体制面での協働も推進していく予定です。

 また、今般適用対象とした不良判定に留まらず、線路保全管理におけるその他の高負荷業務へのAI技術の応用検討も進め、線路DXの実現に共に邁進してまいる所存です。

  • ご参考情報

■株式会社日本線路技術 会社概要

会 社 名:株式会社日本線路技術

所 在 地:〒120-0026 東京都足立区千住旭町42-3

代 表 者:代表取締役社長 原田彰久

設  立:1979年7月

事業内容:線路検測

               線路設備モニタリング

               線路技術エンジニアリング

               保線技術教育

               海外事業

U R L : https://www.kk-nsg.co.jp/


■株式会社Laboro.AI 会社概要

会 社 名:株式会社Laboro.AI(ラボロ エーアイ)

所 在 地:〒104-0061 東京都中央区銀座八丁目11-1

代 表 者:代表取締役CEO 椎橋徹夫・代表取締役COO兼CTO 藤原弘将

設  立:2016年4月1日

事業内容:機械学習を活用したオーダーメイド型AI『カスタムAI』の開発

     カスタムAI導入のためのコンサルティング

U R L : https://laboro.ai/

このプレスリリースには、メディア関係者向けの情報があります

メディアユーザーログイン既に登録済みの方はこちら
メディアユーザー新規登録無料

メディアユーザー登録を行うと、企業担当者の連絡先や、イベント・記者会見の情報など様々な特記情報を閲覧できます。※内容はプレスリリースにより異なります。

すべての画像


種類
商品サービス
関連リンク
https://laboro.ai/
ダウンロード
プレスリリース.pdf
プレスリリース素材

このプレスリリース内で使われている画像ファイルがダウンロードできます

会社概要

株式会社Laboro.AI

13フォロワー

RSS
URL
https://laboro.ai/
業種
情報通信
本社所在地
東京都中央区銀座八丁目11-1
電話番号
-
代表者名
椎橋徹夫、藤原弘将
上場
東証グロース
資本金
-
設立
2016年04月
トレンド情報をイチ早くお届けPR TIMESを友達に追加PR TIMESのご利用について資料をダウンロード